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Abstract— Over recent years, regression model is a well known 
modeling technique used to model the real world application. 
This paper conducted computational experimental study using 
two types of regression models; second order polynomial 
regression (SOP) and multiple linear regression in optimizing 
machining process parameters of cobalt-bonded tungsten carbide 
(WC/Co) electrical discharge machining (EDM). Multiobjective 
genetic algorithm (MOGA) is widely known in optimization 
researches. Therefore, combination of conventional modeling 
(regression) and modern optimization (MOGA) techniques, 
MLR-MOGA and SOP-MOGA are examined to observe the 
capability of these two techniques in maximizing removal rate 
(MRR) and minimizing surface roughness (Ra). Four parameters 
are considered to create correlation with the machining 
performances. The best removal rate and surface roughness 
values are obtained from MLR-MOGA; 168.212 mg/min and 
0.693 µm respectively. Nevertheless, SOP-MOGA produced 
viable results. The results of MLR-MOGA and SOP-MOGA 
benefits the machine operators or engineers when various 
combination of machining parameters can be selected based on 
the desired requirements. 
 
Keywords — Machining, Genetic Algorithm, Regression, 
Multiobjective 

I. INTRODUCTION 
Machining can be divided into two categories; (i) modern 

machining and (ii) traditional machining. Known as the 
earliest modern machining, EDM is a well established 
machining option used to remove material through the action 
of electrical discharge in fast mode and high current density. 
One of EDM research interests is optimizing the process 
parameters as highlighted by Ho and Newman [1].  

Machining models are developed to represent the 
connection between input (machining parameters) and output 
(machining performances) variables. There are many 

modeling techniques in machining optimization such as fuzzy 
logic [2], support vector machine [3], artificial neural network 
(ANN) [4] and many more.  

New soft computing techniques are developed to assist in 
searching optimal solutions such as genetic algorithm (GA) 
[5], Levi flight algorithm [6], glowworm swarm optimization 
[7], firefly algorithm [8] and many more. GA is one of the 
most popular techniques in the machining optimization area as 
studied by Yusup et al. [9]. Multi objective GA is an 
optimization technique that is enhanced from single objective 
genetic algorithm to support the multi objectives problems. 
One of the pioneer in multi objective GA; MOGA [10] 
implemented a rank based fitness assignment and niche-
formation methods to encourage the search toward Pareto 
front in the optimization algorithm. According to the theory of 
Fonseca and Fleming [10], all non dominated individuals are 
assign rank 1 as in Figure 1.  

 

 
 

Fig. 1. Multiobjective ranking 
 
In 2002, Deb et al. introduced a modified version of 
multiobjective GA, NSGA-II [11] which is highly applied in 
machining optimization [12]. Bouzakis et al [13] minimized 
milling machining cost and machining time with consideration 
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of three parameters, (i) depth of cut, (ii) feed rate and (iii) 
cutting speed. The authors used MOGA technique to obtain 
the process parameters that can be applied in various cases of 
milling optimization process. Mahdavinejad [14] optimized 
the turning parameters of steel using MOGA and multi-
objective harmony search (HS) algorithm Geem et al. [15] to 
optimize removal rate and surface roughness. Sultana and 
Dhar [16] used response surface methodology (RSM) to 
develop machining model and MOGA to optimize the process 
parameters of turning AISI-4320 steel by uncoated carbide 
insert. The process parameters considered are cutting speed, 
feed rate, pressure and flow rate of high pressure and the 
objectives considered are cutting temperature, chip reduction 
co-efficient and surface roughness. Venkataraman [17] 
maximized removal rate and minimized electrode wear rate 
(EWR) for EDM. Five parameters considered are open 
voltage, pulse on time, duty cycle and pressure of flushing 
fluid. Polynomial model and multi objective genetic algorithm 
are used to optimize the machining process.  

Kanagarajan et al. [18] employed second order polynomial 
regression and non dominated sorting genetic algorithm 
(NSGA-II) to optimize the machining parameters of WC/Co 
EDM. Yusoff et al. [19] then applied the model developed by 
Kanagarajan et al. using both; single (SoGA) and multi 
objective optimization techniques (MOGA and NSGA-II). It is 
found that SoGA produced the lowest surface roughness value 
and the results obtained from MOGA are viable compared to 
NSGA-II. In conjunction with the experimental conducted by 
Yusoff et al. [19], this study investigated and compared the 
efficiencies of regression modeling techniques in optimizing 
of WC/Co EDM parameters using MOGA.  Basically, this 
study is conducted to observe the performances of two 
different regression models when integrated with MOGA in 
machining optimization. 

 

II. RESEARCH METHODOLOGY 
Essentially, this study employed four consecutive ways in 

obtaining the final optimal solutions. The steps involved; 
collection of experimental data, modeling, optimization and 
results analysis. Second order polynomial (SOP) and multiple 
linear regression (MLR) are used to obtain the machining 
models. Multiobjective GA (MOGA) is used to optimize the 
parameters. Using computational and soft computing 
techniques in obtaining optimal solutions can reduce the 
machining trials that involved extreme cost, time and attempt 
in searching the best parameters. 

The parameters considered are electrode rotation (R), 
current (I), pulse on time (T) and dielectric flushing pressure 
(P).  Removal rate (MRR) and surface roughness (Ra) are the 
machining objectives or also known as the machining 
performances. 

To correlate the machining inputs (machining parameters) 
and outputs (machining performances), two types of 
regression models are applied. Second order polynomial 
regression (SOP) developed by Kanagarajan et al. and 
multiple linear regression (MLR) which is developed using 

SPSS software. The models are then integrated in the 
optimization tool, MOGA using Matlab software to obtain the 
optimal solutions.  

Finally the results of these two techniques are compared. 
The flow of this study is summarized as shown in Figure 2 and 
further details in next sub-sub sections. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Fig. 2. Research flow 
 

A. Experimental 
The experimental  results by Kanagarajan et al. [18] are 

used in this study. The authors used a machine of Electronica 
die sinking EDM (M100 model, Electronica, India) with a 
transistor switched power supply. Density for WC is 15.7 g/cc 
and CO is 13.55 g/cc. The grain sizes are 6µm and 3µm 
respectively. The machining conditions of this study are 
shown in Table I. 

TABLE I.  MACHINING CONDITIONS 

Condition Descriptions 
Electrode Material: copper (electrolytic grade) 

Size: cylindrical with a diameter of 13 mm 
Workpiece Material: tungsten carbide 70% WC/ 30% Co 

Size: cylindrical rod of diameter 13 mm 
Dielectric fluid: kerosene 

Flushing Jet flushing 
Flushing pressure: 0.5-1.5  

Rotational speed 
Discharge current 
Pulse on time 

250, 500, 1000 rpm 
5, 10, 15 A 
200, 500, 1000 

 
The experimental results of WC/Co EDM as shown in 

Table II are based on L27 orthogonal array technique covering 
full range of current setting with pulse on time settings.  

 
 

Experimental results of WC/Co EDM 
Machining objectives: Removal rate (MRR), Surface 
roughness (Ra) 
Process parameters: Rotational speed (S), Pulse current (C), 
Pulse on time (T), Flushing pressure (P) 

Development of machining models: Second order polynomial 
(SOP) and Multiple Linear Regression (MLR) 

 
 

Optimization technique: MOGA 
 

Results comparison of machining process optimal solutions 
using different modeling techniques: SOP–MOGA and MLR–

MOGA 
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TABLE II.  EXPERIMENTAL RESULTS OF WC/CO EDM 

Sol. Electrode 
Rotation, 
rpm (R) 

Current, 
A (I) 

Pulse on 
time, µs 
(T) 

Flushing 
pressure, 
kg/cm2 (P) 

MRR, 
mg/min 

Ra, 
µm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

250 
250 
250 
250 
250 
250 
250 
250 
250 
500 
500 
500 
500 
500 
500 
500 
500 
500 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

5 
5 
5 
10 
10 
10 
15 
15 
15 
5 
5 
5 
10 
10 
10 
15 
15 
15 
5 
5 
5 
10 
10 
10 
15 
15 
15 

200 
200 
200 
500 
500 
500 
1000 
1000 
1000 
500 
500 
500 
1000 
1000 
1000 
200 
200 
200 
1000 
1000 
1000 
200 
200 
200 
500 
500 
500 

0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 
0.5 
1.0 
1.5 

38.19 
46.05 
51.37 
46.50 
56.07 
62.56 
49.31 
59.45 
66.33 
37.77 
45.54 
50.81 
49.84 
60.09 
67.05 
121.07 
145.98 
162.87 
40.48 
48.81 
54.46 
122.37 
147.55 
164.62 
119.74 
144.38 
161.09 

3.94 
2.84 
2.35 
8.83 
6.37 
5.27 
14.74 
10.64 
8.80 
3.89 
2.81 
2.39 
8.24 
5.94 
4.91 
7.56 
5.45 
4.51 
3.63 
2.62 
2.37 
4.22 
3.05 
2.52 
7.47 
5.39 
4.46 

Max removal rate (MRR) 164.62  
Min surface roughness (Ra)  2.35 
 

B. Machining Models 
From the machining results, two models are implemented; 

(i) second order polynomial model developed by Kanagarajan 
et al. [18] and (i) newly developed multiple linear regression 
model (MLR). The second order polynomial models for 
removal rate and surface roughness are shown in Equation 1 
and Equation 2 for material removal rate (MRR) and surface 
roughness (Ra) respectively.  

 
Second Order Polynomial Regression  
MRR = -30.3660 + 0.1589R + 9.5259I - 0.1241T + 
20.8585P - 0.0001R2 - 0.2318I2 + 0.0001T2 - 
9.2131P2 - 0.0002RI - 0.0000RT + 0.0220RP + 
1.9991IP - 0.0199TP 

 

(1) 

Ra = 4.2307 - 0.0116S  + 0.5816C + 0.0099T - 
4.7481P + 0.0000S2 + 0.0085C2 - 0.0000T2 + 
2.1239P2 - 0.0002SC - 0.0000ST  – 0.0020SP  - 
0.2462CP  - 0.0018 

(2) 

 
Multiple linear regression equations of removal rate and 

surface roughness are based on the unstandardized coefficients 
values (B) of Tables III and IV.  

 
 
 
 

TABLE III.  COEFFICIENTS VALUES FOR MRR 

Model Unstandardized Coefficients 
B Std. Error 

(Constant) 
R 
I 
T 
P 

-15.652 
0.075 
6.853 
0.068 

23.988 

8.295 
0.006 
0.461 
0.006 
4.607 

TABLE IV.  COEFFICIENTS VALUES FOR RA 

Model Unstandardized Coefficients 
B Std. Error 

(Constant) 
R 
I 
T 
P 

3.734 
-0.004 
0.469 
0.004 
-2.771 

0.815 
0.001 
0.045 
0.001 
0.453 

 
The coefficients and constant for multiple linear regression 

models of material removal rate (MRR) and surface roughness 
(Ra) are given in Equation 3 and Equation 4.  

 
Multiple Linear Regression 
MRR = -15.652  + 0.075R  + 6.853I- 0.68T + 
23.988P 

 
(3) 

  
Ra = 3.734 - 0.004R + 0.469I + 0.004T - 2.771P (4) 

 

C. Optimization  
Based on NSGA-II introduced by Deb et al. [1], a 

multiobjective optimization tool, MOGA using Matlab is 
applied to obtain the optimal solutions. MOGA acts on 
individuals with better fitness value that can help to increase 
the diversity of the population even if they have a lower 
fitness value. It is very important to preserve the diversity of 
population for convergence to an optimal Pareto front by 
controlling the elite members of the algorithm.  

The steps start with initialization by generating the random 
population. The next step is evaluation of the fitness of each 
chromosome using the multi objectives function (machining 
models). The algorithm parameters boundaries (Table V) are 
used to get solutions that are within the expected values.   

 

TABLE V.  ALGORITHM BOUNDARIES 

Parameters Lower bound Upper bound 
Rotational speed, rpm 250 1000 
Pulse current, A 
Pulse on time, µs 
Flushing pressure,  

5 
200 
0.5 

15 
1000 
1.5 

 
Next is parent selection procedure which is based on the 

selection of fittest survival. The fittest chromosome from the 
current population is selected to generate new offspring. The 
selection is carried out using the binary tournament selection 
with crowded comparison operator. If the solutions belong to 
different fronts, one with a lower rank is selected. Meanwhile 
if the solutions belong to the same front, one with higher 
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crowding distance is selected. Then crossover; new offspring 
is produce by combining subparts of selected chromosomes 
using recombination operator. Intermediate crossover is 
employed which creates two children from two parents. 
Mutation is carried out to introduce the deviation into 
chromosome to avoid premature convergence or 
segmentation. To improve the performance of genetic 
algorithm, elitist strategy is use to increase the speed of 
population domination. Using this strategy the best 
chromosomes are copied into the successive generation. 
Finally, termination of GA is when the stopping condition is 
satisfied; otherwise the circle will go to selection, crossover, 
mutation and so on for the next iteration. The flow repeats for 
successive generations. The final set of Pareto optimal 
solutions represents dominated solutions from the each 
generation and it is up to the decision maker to select a 
solution according to the selected objectives. The flow of 
MOGA optimization is illustrated in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. MOGA flow 

 
The algorithm parameters for population, selection, 

mutation, crossover and generation are given in Table VI. 

TABLE VI.  ALGORITHM PARAMETERS 

Parameters Value 
Population size 100 
Selection - Tournament 
Mutation - Uniform 
Crossover - Intermediate 

4 
0.25 
0.9 

Generation 1000 
 

 

D. Results  
MOGA is able to optimize more than one objective 

simultaneously resulted to time efficiency compared to single 

objective genetic algorithm. Optimizing machining process 
parameters using SOP-MOGA and MLR-MOGA are expected 
to give best set of estimation solutions. The maximum 
removal rate (MRR) , 152.660 mg/min and minimum surface 
roughness (Ra), 5.825 µm values are obtained simultaneously 
using SOP-MOGA with R, I, T, P values are 978.929 rpm, 
14.944 A, 212.372 µs, 0.973 kg/cm2 respectively. The same 
results of optimal solutions are generated twice as shown in 
Table VII. Figure 4 depicts the Pareto front of removal rate 
(MRR) and surface roughness (Ra) from SOP–MOGA 
optimization.  

TABLE VII.  SOP-MOGA OPTIMAL SOLUTIONS 

Sol. Electrode 
Rotation, 
rpm (R) 

Current, 
A (I) 

Pulse on 
time, µs 
(T) 

Flushing 
pressure, 
kg/cm2 (P) 

MRR, 
mg/min 

Ra, 
µm 

1 979.175 5.799 211.907 0.975 93.620 8.790 
2 971.302 8.486 215.488 0.962 114.308 7.856 
3 978.929 14.944 212.372 0.973 152.660 5.825 
4 976.595 13.777 216.770 0.957 146.106 6.104 
5 976.378 11.294 215.180 0.963 133.030 7.051 
6 957.147 6.064 212.072 0.974 96.154 8.395 
7 976.557 11.752 216.432 0.958 135.406 6.858 
8 977.817 13.473 214.339 0.966 145.246 6.316 
9 976.987 14.075 216.031 0.960 147.728 6.019 
10 977.621 9.841 214.837 0.964 123.855 7.558 
11 977.232 7.179 213.438 0.969 104.700 8.367 
12 973.907 5.863 211.947 0.975 94.238 8.696 
13 977.763 12.217 214.566 0.965 138.525 6.769 
14 976.894 7.399 213.703 0.968 106.380 8.295 
15 978.170 14.589 213.601 0.968 150.753 5.913 
16 978.486 12.499 213.089 0.970 140.462 6.724 
17 978.702 11.047 212.788 0.972 132.096 7.240 
18 978.438 9.338 213.283 0.970 120.795 7.770 
19 977.347 11.528 214.157 0.967 134.672 7.016 
20 977.698 13.867 214.687 0.965 147.095 6.153 
21 978.282 13.153 212.501 0.973 144.106 6.500 
22 978.175 8.074 213.108 0.970 111.691 8.143 
23 978.816 8.096 212.583 0.972 111.975 8.160 
24 978.422 11.048 213.318 0.970 131.975 7.220 
25 978.601 9.378 212.764 0.972 121.193 7.774 
26 978.563 7.693 213.061 0.971 108.797 8.258 
27 977.472 7.206 213.260 0.970 104.959 8.368 
28 978.491 12.683 212.798 0.971 141.541 6.666 
29 979.062 6.606 212.066 0.974 100.368 8.581 
30 978.936 14.227 212.354 0.973 149.429 6.108 
31 978.952 13.675 212.324 0.973 146.784 6.321 
32 978.905 12.681 212.341 0.973 141.646 6.688 
33 974.213 6.130 211.988 0.975 96.500 8.633 
34 978.261 14.384 213.383 0.969 149.877 6.003 
35 977.593 8.271 212.379 0.973 113.349 8.097 
36 979.148 6.045 211.958 0.975 95.702 8.728 
37 977.590 12.029 213.885 0.968 137.647 6.853 
38 978.600 8.585 212.863 0.971 115.532 8.009 
39 978.381 12.482 213.301 0.970 140.314 6.722 
40 974.547 6.927 211.999 0.974 103.063 8.432 
41 978.023 11.476 213.413 0.969 134.542 7.066 
42 978.486 13.436 212.954 0.971 145.426 6.384 
43 976.054 5.837 211.931 0.975 93.987 8.734 
44 978.905 14.836 212.406 0.973 152.178 5.867 
45 977.901 13.875 214.222 0.966 147.257 6.168 
46 978.686 10.676 212.399 0.973 129.881 7.374 

Tournament Selection to choose best individual as parent 

Mutation to make random changes to individual 
 

Crossover to combine individuals for next generation  

Elitist Strategy 

Stop 

Generate initialization of population  

Evaluate the objective functions and estimate fitness value 
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47 978.840 9.415 212.151 0.974 121.597 7.783 
48 976.837 6.688 211.968 0.975 101.096 8.530 
49 978.497 11.504 213.117 0.970 134.781 7.073 
50 978.365 12.182 212.751 0.972 138.790 6.845 
51 978.628 11.941 212.628 0.972 137.452 6.938 
52 978.616 7.838 212.962 0.971 109.931 8.220 
53 978.784 12.523 212.552 0.972 140.733 6.736 
54 974.900 6.355 212.006 0.974 98.368 8.586 
55 976.684 5.913 211.939 0.975 94.629 8.724 
56 978.062 6.816 212.067 0.974 102.093 8.512 
57 979.072 6.608 212.060 0.974 100.379 8.581 
58 978.617 12.942 212.363 0.973 143.035 6.588 
59 978.884 8.498 212.407 0.973 114.995 8.051 
60 978.551 8.083 212.929 0.971 111.800 8.151 
61 978.046 10.068 214.035 0.967 125.559 7.514 
62 978.929 14.944 212.372 0.973 152.660 5.825 
63 977.966 9.230 213.401 0.969 120.015 7.792 
64 978.484 11.177 212.622 0.972 132.936 7.198 
65 978.445 9.116 212.253 0.974 119.492 7.865 
66 978.565 7.480 212.110 0.974 107.366 8.341 
67 978.905 13.519 212.416 0.973 145.982 6.377 
68 978.814 9.570 212.552 0.972 122.563 7.724 
69 978.044 8.398 212.401 0.973 114.277 8.067 
70 978.681 10.150 212.734 0.972 126.409 7.535 
71 978.467 14.092 213.166 0.970 148.576 6.127 
72 978.757 10.465 212.356 0.973 128.549 7.445 
73 977.361 6.489 211.955 0.975 99.454 8.589 
74 977.621 9.921 213.727 0.968 124.660 7.562 
75 978.820 14.594 212.407 0.973 151.104 5.961 
76 978.961 9.212 212.308 0.973 120.142 7.843 
77 978.626 12.152 212.842 0.971 138.600 6.857 
78 978.516 11.559 213.017 0.971 135.124 7.057 
79 978.156 12.835 213.629 0.968 142.136 6.581 
80 979.144 6.170 211.967 0.975 96.760 8.696 
81 978.575 8.137 212.204 0.974 112.374 8.155 
82 978.882 9.581 212.429 0.973 122.666 7.725 
83 978.695 8.967 212.636 0.972 118.340 7.903 
84 978.917 13.949 212.392 0.973 148.099 6.214 
85 978.955 10.298 212.208 0.974 127.498 7.507 
86 974.490 5.856 211.942 0.975 94.170 8.706 
87 978.822 8.775 212.538 0.972 116.985 7.965 
88 979.170 5.844 211.917 0.975 94.000 8.779 
89 978.967 8.953 212.177 0.974 118.346 7.924 
90 978.405 12.807 213.054 0.971 142.138 6.612 
91 977.577 9.775 212.684 0.972 123.944 7.637 
92 979.108 7.507 212.034 0.974 107.588 8.343 
93 976.845 6.177 212.209 0.974 96.801 8.654 
94 978.497 11.504 213.117 0.970 134.781 7.073 
95 976.054 5.837 211.931 0.975 93.987 8.734 
96 974.213 6.130 211.988 0.975 96.500 8.633 
97 979.175 5.799 211.907 0.975 93.620 8.790 
98 978.551 8.083 212.929 0.971 111.800 8.151 
99 978.960 11.485 212.305 0.973 134.870 7.110 
100 979.121 7.692 212.009 0.955 108.334 8.200 
Max removal rate (MRR) 152.660  
Min surface roughness (Ra)  5.825 
  
 
 
 

 
 
 

 
 
 

 

 

 

 

 

 

Fig. 4. Pareto front of MRR (objective 1) and Ra (objective 2) using SOP-
MOGA 

The optimal solutions of MLR-MOGA for removal rate and 
surface roughness are obtained separately as indicated in 
Table VIII. Maximum removal rate (MRR) is attained from 
the first set of solutions. While the optimal solutions for 
surface roughness is obtained from the second set of solutions. 
The maximum value for removal rate is 168.212 mg/min with 
combination of process parameters R = 974.770 rpm, I = 
14.944 A, T = 218.250 µs and P = 0.967 kg/cm2. Meanwhile, 
the minimum surface roughness (Ra) is 0.693 µm and the 
process parameters are R = 977.810 rpm, I = 5.799 A, T = 
211.907 µs and P = 0.973 kg/cm2. The Pareto front plots of 
removal rate (MRR) and surface roughness (Ra) using MLR-
MOGA is shown in Figure 5. 

TABLE VIII.  MLR-MOGA OPTIMAL SOLUTIONS 

 

Electrode 
Rotation, 
rpm (R) 

Current, 
A (I) 

Pulse on 
time, µs 
(T) 

Flushing 
pressure, 
kg/cm2 
(P) 

MRR, 
mg/min 

Ra, 
µm 

1 974.770 14.944 218.250 0.967 168.212 5.038 
2 977.810 5.799 211.907 0.973 106.366 0.693 
3 977.546 6.595 212.461 0.931 110.743 1.187 
4 977.620 6.382 212.341 0.949 109.726 1.037 
5 976.302 10.391 215.067 0.946 136.852 2.940 
6 977.718 6.059 212.102 0.953 107.639 0.872 
7 975.848 12.221 216.048 0.953 149.464 3.785 
8 976.860 9.275 213.910 0.951 129.437 2.398 
9 976.924 8.583 213.764 0.946 124.585 2.086 
10 975.560 12.651 216.603 0.960 152.523 3.970 
11 977.503 6.734 212.549 0.964 112.471 1.162 
12 974.938 14.946 217.900 0.964 168.206 5.043 
13 976.172 10.984 215.342 0.958 141.177 3.187 
14 976.300 10.556 215.072 0.960 138.325 2.978 
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15 975.560 13.215 216.603 0.960 156.389 4.235 
16 977.230 7.635 213.123 0.961 118.528 1.595 
17 976.805 8.834 214.007 0.961 126.634 2.164 
18 975.426 13.232 216.886 0.966 156.605 4.230 
19 975.928 11.525 215.878 0.962 144.919 3.433 
20 977.322 7.252 212.927 0.956 115.787 1.430 
21 976.711 9.113 214.205 0.964 128.619 2.286 
22 977.810 5.799 211.907 0.966 106.190 0.713 
23 975.837 11.888 216.055 0.959 147.325 3.612 
24 976.222 10.642 215.247 0.963 138.948 3.013 
25 976.488 9.873 214.708 0.961 133.685 2.656 
26 976.320 10.358 215.028 0.950 136.716 2.915 
27 976.683 9.240 214.270 0.956 129.274 2.370 
28 976.395 10.169 214.902 0.960 135.672 2.798 
29 975.050 14.124 217.676 0.965 162.607 4.655 
30 976.596 9.548 214.449 0.961 131.485 2.502 
31 975.785 12.409 216.152 0.960 150.901 3.855 
32 974.878 14.629 218.026 0.966 166.075 4.890 
33 975.837 11.888 216.055 0.959 147.325 3.612 
34 976.544 9.664 214.561 0.963 132.320 2.551 
35 975.866 11.706 215.967 0.956 146.009 3.536 
36 975.910 11.515 215.872 0.969 145.022 3.409 
37 977.546 6.598 212.458 0.973 111.767 1.073 
38 974.793 14.879 218.203 0.967 167.771 5.007 
39 975.366 13.457 217.020 0.963 158.060 4.344 
40 977.220 7.617 213.140 0.970 118.615 1.562 
41 976.283 10.402 215.098 0.965 137.369 2.894 
42 976.599 9.531 214.474 0.961 131.386 2.492 
43 977.363 7.162 212.845 0.969 115.509 1.349 
44 977.810 5.799 211.907 0.973 106.366 0.693 
45 976.960 8.360 213.684 0.969 123.621 1.917 
46 975.129 14.280 217.506 0.964 163.667 4.730 
47 975.272 13.436 217.207 0.965 157.942 4.330 
48 976.510 9.788 214.632 0.962 133.155 2.610 
49 977.058 8.088 213.481 0.969 121.787 1.787 
50 977.470 6.846 212.621 0.969 113.356 1.201 
51 976.180 10.888 215.317 0.965 140.689 3.122 
52 976.188 11.018 215.305 0.964 141.551 3.187 
53 977.308 7.357 212.988 0.951 116.400 1.492 
54 975.164 13.758 217.428 0.967 160.185 4.476 
55 976.348 10.566 214.973 0.963 138.469 2.975 
56 976.335 10.280 214.993 0.964 136.539 2.838 
57 975.462 13.059 216.814 0.962 155.322 4.159 
58 976.118 10.891 215.439 0.970 140.798 3.113 
59 977.170 7.734 213.244 0.966 119.320 1.627 
60 975.866 11.706 215.967 0.956 146.009 3.536 
61 974.878 14.629 218.026 0.966 166.075 4.890 
62 977.620 6.382 212.341 0.949 109.726 1.037 
63 976.962 8.353 213.677 0.971 123.633 1.907 
64 975.168 13.883 217.433 0.963 160.945 4.545 
65 976.842 8.714 213.929 0.971 126.070 2.079 
66 975.564 12.952 216.610 0.962 154.611 4.108 
67 977.570 6.536 212.411 0.972 111.329 1.046 
68 975.966 11.469 215.761 0.963 144.571 3.404 
69 977.031 8.169 213.537 0.968 122.309 1.828 
70 975.527 12.692 216.676 0.967 152.954 3.972 
71 975.179 14.081 217.401 0.964 162.323 4.635 
72 977.345 7.272 212.880 0.972 116.316 1.394 
73 975.855 11.680 215.986 0.969 146.139 3.487 
74 975.743 12.036 216.223 0.968 148.530 3.658 
75 976.235 10.767 215.207 0.966 139.878 3.064 
76 975.977 11.329 215.739 0.968 143.727 3.325 
77 975.968 11.342 215.752 0.969 143.850 3.326 
78 975.942 11.468 215.825 0.964 144.591 3.399 

79 977.626 6.367 212.294 0.971 110.168 0.968 
80 977.708 6.111 212.122 0.971 108.429 0.847 
81 976.514 9.915 214.619 0.966 134.121 2.659 
82 977.017 8.187 213.564 0.972 122.513 1.828 
83 976.329 10.283 214.999 0.969 136.671 2.825 
84 977.266 7.478 213.043 0.972 117.710 1.492 
85 975.010 14.410 217.752 0.965 164.576 4.789 
86 976.507 9.773 214.633 0.965 133.118 2.595 
87 976.133 11.221 215.421 0.963 142.910 3.285 
88 975.615 12.404 216.488 0.968 151.037 3.831 
89 976.725 9.167 214.174 0.969 129.101 2.298 
90 977.728 6.053 212.080 0.966 107.920 0.832 
91 975.358 13.191 217.027 0.967 156.328 4.209 
92 976.947 8.452 213.710 0.969 124.251 1.960 
93 977.287 7.396 213.003 0.965 116.995 1.471 
94 976.603 9.503 214.430 0.967 131.319 2.464 
95 975.234 13.548 217.282 0.967 158.765 4.376 
96 975.780 11.916 216.144 0.968 147.712 3.602 
97 976.126 11.127 215.425 0.967 142.362 3.229 
98 975.146 13.944 217.479 0.963 161.363 4.574 
99 977.810 5.799 211.907 0.966 106.190 0.713 
100 974.770 14.944 218.250 0.967 168.212 5.038 
Max removal rate 152.660  
Min surface roughness  5.825 
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Fig. 5. Pareto front of MRR (objective 1) and Ra (objective 2) using MLR-
MOGA 

Table IX shows the maximum removal rate and minimum 
surface roughness obtained from SOP-MOGA and MLR-
MOGA. T test were conducted to validate the differences 
between experimental with SOP-MOGA and MLR- MOGA 
optimization. If p < 0.05, it shows that the observed different 
within two methods are significant. Value of p for SOP-
MOGA and MLR-MOGA are given in Table X, whereby p 
values of removal rate are 4.599E-05 and 8.016E-07 
respectively. Therefore, both optimization techniques are 
statistically significant, however MLR-MOGA shows better 
confidence interval. The t test for validation of surface 
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roughness value is shown in Table XI. The p values of SOP-
MOGA and MLR-MOGA are 0.000517533 and 8.138E-05 
respectively. The differences in surface roughness between 
experimental with SOP-MOGA and MLR-MOGA are also 
considered to be statistically significant. Though, p value of 
surface roughness is lower when using MLR-MOGA and 
provides better confidence level than SOP-MOGA. 

TABLE IX.  MLR-MOGA OPTIMAL SOLUTIONS 

Model-
Optimization 

Electrode 
Rotation, 
rpm (R) 

Current, 
A (I) 

Pulse 
on 
time, 
µs (T) 

Flushing 
pressure, 
kg/cm2 
(P) 

MRR, 
mg/min 

Ra, 
µm 

SOP-MOGA 
      
978.929 14.944 212.372 0.973 152.660 5.825 
      

MLR-MOGA  

      
974.770 14.944 218.250 0.967 168.212 5.038 
977.810 5.799 211.907 0.973 106.366 0.693 
      

TABLE X.  RESULT COMPARISON OF MRR 

MRR Experimental SOP-MOGA MLR-MOGA 
Mean 82.235185 123.26438 136.57759 
Variance 2090.1961 350.06605 328.6352 
Observations 27 100 100 
Hypothesized Mean 
Difference 

 0 0 

df  28 28 
t Stat  -4.561184 -6.0492194 
P(T<=t) one-tail  4.599E-05 8.016E-07 
t Critical one-tail  1.7011309 1.7011309 
P(T<=t) two-tail  9.197E-05 1.603E-06 
t Critical two-tail  2.0484071 2.0484071 

TABLE XI.  RESULT COMPARISON OF RA 

Ra Experimental SOP-MOGA MLR-MOGA 
Mean 5.378148148 7.5066018 2.8434038 
Variance 8.826023362 0.8302611 1.5969289 
Observations 27 100 100 
Hypothesized Mean 
Difference 

 0 0 

df  27 29 
t Stat  -3.676352422 4.3288881 
P(T<=t) one-tail  0.000517533 8.138E-05 
t Critical one-tail  1.703288423 1.699127 
P(T<=t) two-tail  0.001035066 0.0001628 
t Critical two-tail  2.051830493 2.0452296 

 

III. CONCLUSION 
This paper presented comparative empirical results of using 

two types of regression models to integrate with 
multiobjective GA. Most researchers used second order 
polynomial regression [18, 20, 21, 22]. Lower level of 
regression model, multiple linear regression is used in this 

study to compare the efficiency of these two techniques when 
integrating it with multi objective optimization, as in this case, 
MOGA is used. Generally, SOP-MOGA and MLR-MOGA 
are relevant in optimizing machining process parameters. The 
results proved that the best removal rate (MRR) and surface 
roughness (Ra) are obtained from MLR-MOGA. However, 
SOP-MOGA is able to generate possible maximum removal 
rate (MRR) and minimum surface roughness (Ra) values 
simultaneously from same solution without neglecting any of 
the objectives. From the results of MLR-MOGA, operators 
and engineers can choose either to maximize removal rate 
(MRR) or minimize surface roughness (Ra).  
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