
International Journal of Innovative Computing 8(2) 49-60

49

Ontology of Mutation Testing for Java

Operators

Sherolwendy Sualim, Radziah Mohamad, Nor Azizah Saadon

Faculty of Computing, Universiti Teknologi Malaysia

81310, UTM Johor Bahru, Johor, Malaysia

Submitted: 12/01/2018. Revised edition: 16/05/2018. Accepted: 21/05/2018. Published online: 31/05/2018

Abstract—Operators are special characters within the Java

language to manipulate primitive data type. Java operators

can be classified as unary, binary and ternary. The design of

Java operator sometimes becomes confusing when it comes to

testing tools as they had the same function with different label

in every testing tool. Therefore, in order to map the

knowledge of operators correctly, this research has proposed

ontology that is dedicated to mutation testing as a means to

define the formal specification of concepts and documentation

of knowledge of Java operators. Existing papers on ontology

did not specify further on entities and properties of operators.

Some papers only focus on mutation testing but not the

operators. Thus, this paper will present the ontology clearly

with the aim to ease end user to identify and understand every

classes, properties and relations in Java operators.

Keywords — Mutation testing, ontology, Java operators

I. INTRODUCTION

For decades, knowledge representation has been the focus

of interest as more methods and techniques have emerged

during that time where ontologies currently are one of most

popular and widespread [1]. The focus of modern

information systems is moving from data processing

towards concept processing, meaning that the basic unit for

processing is being less and less an automatic piece of data

and is becoming more like a semantic concept which

carries an interpretation and exists in a context with other

concepts. Ontology is defined as a formal, and explicit

specification of a shared conceptualization [2], [3].

Building ontology especially for a specific domain can be

started by scratching a new ontology [4] or just modifying

an existing ontology [5]. There are three main components

in ontology namely concepts, individuals and properties

where concepts define aggregation of things, and properties

link the instance of concepts, and individuals.

Designing ontology is very essential especially in

capturing the concept, properties and interrelationship in a

context. Modeling context ontology is possible because it

can be considered as specific kind of knowledge [9]. Since

ontology can be described as sharing comprehension of

specific domain interest, it can be used as a basic structure

to solve the problem in knowledge sharing [10]. Ontology

also helps in improving communication between humans

and computers. So, these can be further classified into

several sections namely assisting communication among

human agents, achieving interoperability, or improving the

quality of tasks [11].

Mutation testing is basically a white-box technique that

can generally be used in software testing to check syntax

error in the programs. Mutation testing starts with injecting

the original program with a fault to mutate it [15]. Then, a

mutation operator is applied before checking whether the

test identifies this fault [52]. These changes lead to a

program variant which is called mutant. The fundamental

aspect is to check whether the test suite is able to detect the

mutant. It can be said that the mutant is detected or killed

if the test run fails. Otherwise, the mutant is alive.The use

of mutation testing is to improve a test suite by providing

tests for undetected mutants. After mutations are applied to

a program, then the instigator can check whether the test

suite detects mutations or not. If the results show a set of

undetected mutants, the programmer may attempt to add or

modify existing tests until satisfactory results are attained.

The effectiveness of mutation testing depends on the

types of faults that the mutation system is designed to

represent. Since mutation testing uses mutation operators

to implement faults, the quality of the mutation operators is

crucial to the effectiveness of mutation testing. Two

general types of mutation operators for Java namely

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

50

method operator and class operator. Method operators had

been used in previous mutation tools for programming

language besides Java [52]. These operators are applied to

statements, operands and operators which perform actions

such as modification, replacement and deletion. For class

level operators, they are related to inheritance,

polymorphism and Java-specific object oriented features

[52]. Although mutation testing had a rich history, most of

mutation operators have been developed for procedural

programs.

The mutation operators are designed and expressed

specifically for Java language [53]. This is important

because mutation operators must take the semantics of a

programming language into account. The current set of

method and class operators are insufficient to evaluate

concurrent Java source code [52]. To execute mutation

testing with operators, they should be selected based on the

characteristic of the program to be tested. Therefore, the

quality of the mutation operators is the key to mutation

testing. Mutation operators are classified by the language

constructs they are created to alter. Traditionally, the scope

of operators was limited to the method level [54]. Some

previous mutation operators have been developed based on

experience of testers. All behaviours of mutation operators

fall under one of three categories namely delete, insert or

change a target syntactic element [55].

The paper is organized as follow. Section 2 discusses

the related work, and Section 3 discusses the methodology

used to build ontology. Section 4 provides an overview of

proposed ontology and Section 5 discusses about ontology

consistency checking. The last two sections state the

discussion and conclusion of the work.

II. RELATED WORK

Mutation testing is basically a white-box technique that can

be used in software testing to ensure that programs are free

from the syntax errors. Mutation testing is a software

testing that is originally proposed by Hamlet [15]. Mutation

testing is based upon seeding the implementation (original

program) with a fault (mutating it), by applying a mutation

operator, and determining whether the testing identifies this

fault [16]. A program that is mutated is called a mutant and

it is said to kill the mutant if any of the test case can

distinguish between mutant and original program. But if

there is no test case that can distinguish between mutant

and original program then mutant is still alive.

Mutation testing process consists of three common

phases which are mutant generation, test cases to mutant

execution and results evaluation. Mutant is the version of a

program that is generated from mutation operator that

changed one or more source code line. A mutation operator

is a group of rules that is used to select or manipulate the

line of source code [17]. Mutation is carried out by

applying a set of mutation operators to a ground string [18].

The ground string is actually expressed in grammar.

Mutation operator is defined as a rule that specifies

syntactic variations of string that are generated from a

grammar [19]. These operators can also be applied directly

to grammar without the existence of a ground string. Thus,

mutation can be used to generate both valid and invalid

string that differs from ground string. Both string cases are

called mutants. Mutation testing has been applied to

software code, particularly to Java [20][21]. Previous

research has identified a set of operators for mutation [18].

However, in practice mutation is sensitive to the underlying

mutants that it is using. In other words, the set of the

realized operators can have major impact on both

scalability and effectiveness of the technique. Therefore, it

is mandatory to equip mutation testing tool with a

comprehensive set of mutants that can adequately measure

thoroughness and act as a practical test.

Traditional mutation testing introduced error in the

code when operated at the syntax level. But, traditional

mutation operators are not sufficient for testing Object-

Oriented (OO) programming languages like Java [22][20].

This is because the faults represented by the traditional

mutation operators are different from OO environment due

to the differences in OO programming structure. Besides,

there are new faults introduced by OO-specific features,

inheritance and polymorphism. The design of Java

operators are not strongly influenced by previous work as

the first design operators [23] using Hazard and Operability

Studies (HAZOP). Based on these plausible faults, 20 Java

mutation operators are designed with six groups. Then,

Class Mutation is introduced to OO programs that targets

faults related to OO-specific features [24]. In Class

Mutation, the first three mutation operators are selected to

represent Java OO-features and later ten mutation operators

are added [25]. The Class mutation operators are extended

to 15 which are grouped into four types [26]:

polymorphism, overloading, information hiding and

exception handling.

To increase the effectiveness of all mutation operators,

24 comprehensive Java mutation operators are introduced

and they are classified into six groups: information hiding,

inheritance, polymorphism, overloading, Java specific

features and common programming mistakes [27]. There

are also alternative approaches to define mutation operators

for Java, which is to inject faults into Java utility libraries

especially container library and iterator library [28]. All of

these approaches keep growing due to concurrent Java

environment. In general process of mutation testing, the

mutant is generated by executing mutation operators to the

source code program. Many mutation operators are already

being defined, for instance, Mothra has defined 22

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

51

operators [29], while latest research has compiled 24

operators [30][31] under statement level, class level and

method level. The generation of operators will also increase

as more operators will be invented. Hence, changes in

operators lead to new tools invention or upgrade.

In 2006, Ma et al. invents a mutation system for java

called MuJava [56]. It is an automated tool that uses two

types of mutation operators, method level and class level.

This tool supports the entire mutation process of Java

program. However, this tool is relatively slow when it

generates and runs lots of mutants. It is an ongoing project

that still needs some improvement to be a more effective

tool. In 2009, Schuler and Zeller introduce an efficient

mutation testing for Java called Javalance [59]. This tool is

built for efficiency and effectively addresses the problem

of equivalent mutants. Then, Madeyski and Radyk (2010)

invent a mutation testing tool called Judy [57]. Their

objective was to speed up mutation testing. This testing tool

encounters problems when the operators are extended to

inter-method, intra-class and inter-class operators as it

requires the combination of meta-mutant. The tool that

needs to offer an even wider set of mutation operators is

under active development. Just and Schweiggert in 2011

introduce an efficient and extensible tool for mutation

analysis in a Java compiler [58]. It is a fault seeding and

mutation analysis system integrated into Java compiler.

But, they plan to implement new mutation operators and

enhance domain specific language. This tool is not ready

for industrial practice. The latest tool is PIT, invented by

Coles et al. (2016) as a practical mutation testing tool [43].

Since the recent years, many mutation testing tools have

been developed mainly to support research in this area.

MuJava and Major are the most popular among others.

Unfortunately they were built to support research projects

thus, their practical use was limited [60].

Ontologies, on the other hand, have a number of uses

where primarily they describe some domain of knowledge

from a specific perspective. They act more likely to be a

vocabulary as similar to database. Ontologies have become

a basis of knowledge representation in many application

fields, from web searches to medical and local domains [6].

Besides, they also are used for decision support [7],

therefore it is important to be completed without any errors

as possible. It is widely known that there is no proper way

of defining ontology. The definition really depends on the

domain where the purpose of which the ontology is

intended [8]. The application of ontology in mutation

testing were first applied for Web Service which were

targeting specific XML-based language features, for

example in OWL-S specification language [12][13]. OWL-

S introduces a semantic workflow specification using an

ontology specification language. Last time, OWL-s was

analyzed by other researcher to composite Web service

fault patterns [12] and then came out with OWL-s input

type mutant operators and OWL ontology mutation

operator. Then, another approach is proposed based on

OWL-s requirement model [14]. Hence, ontology is

actually an important constituent in semantic web layered

architecture. Problem-solving methods, domain-

independent applications, and software agents, all of them

are using ontologies and knowledge bases built from

ontologies as data. Without ontology, it is impossible to

maintain relationships among the real world entities as

various operations can be performed on the ontology. With

its formal nature and philosophical aspects of handling real

world scenarios, ontology also acts as a linking medium

between human and machine.

Ontology is not a new element in mutation testing.

Nonetheless, this paper introduced ontology for mutation

testing as a solution to the problem of mutation operators.

The distinguished abilities of ontology such as sharing

common understanding of information structure among

end user, enabling reuse of domain knowledge, making

domain assumptions explicit, separating domain

knowledge from operational knowledge, and analyzing

knowledge, [32] are among the reasons it is chosen for a

better solution. Subsequently, ontology will synchronize

and ease the definition of operator for understanding.

Ontology is also very flexible and it is totally suitable for

future generation of mutation testing operators or any

changing due to future research output. Hard-coding in

programming language code makes implementations not

only hard to find and understand but also hard to change as

well. Ontology has made the implementation easier as

explicit specification of domain knowledge are very useful

for new user to learn domain mean. In contrast, this

ontology may solve other limitation issues by previous

methods or techniques of mutation testing operators.

III. METHODOLOGY

For the development of ontology, this paper uses

METHONTOLOGY [49] as the methodology.

METHONTOLOGY is among the most comprehensive

ontology engineering methodology as it is building

ontologies either from scratch, reusing other ontology as

they are, or by process of re-engineering them. This

framework enables the construction of ontologies at the

knowledge level like the conceptual level, as opposed to the

implementation level. This framework consists of several

processes namely identification of the ontology

development process, a life cycle based on evolving

prototypes, and specification steps by methodology itself.

So, generally this method described the process in detail to

build ontology for centralized ontology based systems.

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

52

There are many advantages of using

METHONTOLOGY in building ontologies. This

methodology emphasizes the reuse of existing domain and

upper-level ontologies and proposed to use for

formalization, a set of intermediate representations that

later can be automatically transformed into formal

languages [48]. This includes specification,

conceptualization, formalization, implementation and

maintenance.

Therefore, this methodology is suitable for developing

ontologies at knowledge level.

Fig. 1. Tasks of the conceptualization activity according to METHONTOLOGY [49]

The figure above emphasizes ontology components that are

built inside each task. There are concepts, attributes,

relations, constants, formal axioms, rules and instances.

Besides, the figure illustrates the steps that this

methodology has proposed for creating such component

during conceptualization activity. This is not the sequential

modeling process but some order must be followed to

ensure the consistency and completeness of the represented

knowledge [50].

IV.ONTOLOGY CONSTRUCTION

This proposed ontology explained about Java operators for

mutation testing. Mutation operator is important in this

case. All operators from previous researchers had been

collected and analyzed. The development of ontology was

using web ontology language (OWL). OWL is one of the

recommendations from World Wide Web Consortium

(W3C) to develop ontologies. OWL makes it possible to

describe concepts as it has a richer set of operators like

intersection, union and negation. Fig. 2 shows the diagram

with direct relationships among the concepts in the

ontology.

Fig. 2. Direct relationship among concepts of ontology [47]

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

53

Ontology is a formal explicit description that consists

of individuals, properties and classes. Individuals represent

objects in the domain in which raise interest. Properties are

binary relations on individuals where two individuals are

linked together. Properties of each concept also describe

various features and attributes of the concept. Classes are

interpreted as sets that contain individuals and they are the

focus of most ontology. Classes describe concept in the

domain. A class can have subclasses that represent

concepts that are more specific than the superclass. There

are several steps in developing ontology. The steps include

defining classes, arranging the classes in a taxonomic

hierarchy, defining properties and describing allowed

values for these properties, and filling in the values for

properties for instance.

A. Entity Extraction

In this proposed ontology, the concepts were extracted first

as starting the development of ontology by determining the

domain and scope. This proposed ontology are used for the

application of Java operators in mutation testing. Concepts

can be perceived differently depending on the domain. For

example, in context of mutation operators, the concepts can

include operator type, operator category, operator

characteristic, etc. These concepts are generally organized

in taxonomy where inheritance is usually involved.

Specific type of annotations and metadata were added later

to the document. Table 1 shows the concepts listed in the

proposed ontology as well as the description of main

concept.

Table 1. Description of Concepts

Name Description

Operator Type Operator type is defined as the type of operators. There are four main types as mentioned, method level

[33][39], class level[33][34][35], traditional[33] and general. General for operator type means the

operator falls in the group differ from method, class and traditional.

Operator

Category

Operator category is defined as the category of every operator and totally related to operator type. Every

operator type has their own category. Method level has five category namely arithmetic, relational,

conditional, shift logical, and assignment [33][40]. While class level has five categories called as

encapsulation, inheritance, polymorphism, Java specific features, and overloading [33][34]. Traditional

has sub traditional and general has others.

Operator

Characteristic

Operator characteristic involves all the characteristic related to Java operator in mutation testing. These

characteristics include redundant [29], non-redundant [35] and deletion mutation [36]. These three

characteristic are highly selected and most reviewed by other researchers and are considered an

important element in mutation testing area.

Operator

Equivalency

Operator equivalency is actually one of the important elements in mutation testing. Some operator may

generate similar data as the original [37] during mutation testing, also known as equivalent.

Operator

Example

Operator example is the list of all operators that is already defined for Java program. After reviewing

several papers, there are around 60 operators involved [33][34][38].

B. Taxonomy Formation

After the entities extraction, the next step is taxonomy

formation. The concepts were arranged in the taxonomic

hierarchy and turned to classes of ontology later. Forming

taxonomy is important as it helps human to understand the

ontology better. Besides, it also acts as a reference for

future use of ontology. The taxonomy of proposed ontology

for operators in mutation testing is shown in Fig. 3. For the

taxonomy, there are five elements sub-classes of

Operator02 presented. These five elements are Operator

type, Operator characteristic, Operator category, Operator

equivalency, and Operator example. These five elements

are also called child to Operator02.

Fig. 4 shows the sub-classes for Operator type. There

are four types of operator namely Method level, Class level,

Traditional, and General. There are six categories of

method operators: Arithmetic operator, Relational

operator, Conditional operator, Shift operator, Logical

operator, and lastly Assignment. There are also five

categories listed under class level: Encapsulation,

Inheritance, Polymorphism, Java specific features and

Overloading. Traditional operator type only has one sub-

class called Sub-traditional as there is no specific category

for traditional Java operator. Same goes to general type

operator with one sub-class called Others. Others mean

operators that did not belong to any method, class or

traditional types. All these categories are generally the sub-

classes of Operator category and shown in Fig. 5.

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

54

Fig. 3. Taxonomy of ontology for operators

Fig. 4. Sub-classes of Operator type

After listing all types and categories of operators,

another part is Operator characteristic and Operator

equivalency. As shown in Fig. 6, Operator characteristic

focuses on three main classes: Redundant, Non-redundant

and Deletion mutation. These three elements are important

in operators’ classification and every operator belongs to

any one of them. Figure 7 shows the Operator equivalency

with one sub-class, Equivalent. There are only several

operators that have that equivalency where they tend to

produce equivalent mutant during mutation testing.

Fig. 5. Sub-classes of Operator category

Fig. 6. Sub-classes of Operator characteristic

Fig. 8 shows several sub-classes of Operator example.

Operator example consists of all operators from every

category. Each of the categories has their own members.

For example, Arithmetic has three members namely AOR,

AOI, and AOD. While for Class level example, Inheritance

contains IHI, IHD, IOD, IOP, IOR, ISI, ISD, and IPC.

There are all 61 operators classified and listed under

Operator example but only several can be shown in Fig. 8.

Fig. 7. Sub-classes of Operator Equivalency

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

55

Fig. 8. Sub-classes of Operator example

C. Relationships

As mentioned in previous paragraph, it is possible to

define entities, attributes and relationship for ontology.

Semantic relationship is a direct relationship that exists in

ontology. While, for indirect relationship in ontology it is

called semantic association. Relations shows the type of

connection among the predetermined concepts. Based on

Fig. 9, it shows all the related relations for the operator and

the relation between domain and range. isValueOf relation

is the inverse of hasValue relation. Here are some examples

of relations:

 Method level hasCategory Relational

 Overloading isCategoryOf Class level

 Arithmetic hasExample AOR

 COR isExampleOf Conditional

 ROR hasCharacteristic Redundant

 Deletion mutation isCharacterisitcOf CDL

 ABS possible Equivalent

 Equivalent isPossibleFor LCR

Fig. 9. Properties of ontology

D. Axioms

Axiom is the assertion in logical form that consists of

overall theory described in the ontology in application

domain. Axioms include statements asserted as a deductive

knowledge. Generally, ontology has their own line of

axiom and these axioms are actually a statement that is

assumed as true. Axioms are used to associate class and

property identifier either partial or complete specification

as well as giving other information about classes and

properties. Table 2, 3 and 4 show the axioms for the context

ontology including definition and logical expression.

Table 2. Logical Table

Operator Category

Concept name Axiom description Logical expression

Method_level An operator type that has category

Relational
𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩∋ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙

Class_level An operator type that has category

Inheritance
𝐶𝑙𝑎𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 ∩∋ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒

Traditional An operator type that has category

Subtraditional
𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∩∋ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝑆𝑢𝑏𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

General An operator type that has category

Others
𝐺𝑒𝑛𝑒𝑟𝑎𝑙 ∩∋ ℎ𝑎𝑠𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝑂𝑡ℎ𝑒𝑟𝑠

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

56

Table 3. Logical Table

Operator Example

Concept name Axiom description Logical expression

Arithmetic An operator category who is a member

of method level has example AOR
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝐴𝑂𝑅

Relational An operator category who is a member

of method level has example ROR
𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝑅𝑂𝑅

Conditional An operator category who is a member

of method level has example COI
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝐶𝑂𝐼

Shift An operator category who is a member

of method level has example SOR
𝑆ℎ𝑖𝑓𝑡 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝑆𝑂𝑅

Logical An operator category who is a member

of method level has example LOI
𝐿𝑜𝑔𝑖𝑐𝑎𝑙 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝐿𝑂𝐼

Assignment An operator category who is a member

of method level has example ASR
𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ∈ 𝑀𝑒𝑡ℎ𝑜𝑑_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝐴𝑆𝑅

Encapsulation An operator category who is a member

of class level has example AMC
𝐸𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑙𝑎𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝐴𝑀𝐶

Inheritance An operator category who is a member

of class level has example OMC
𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 ∈ 𝐶𝑙𝑎𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝑂𝑀𝐶

Polymorphism An operator category who is a member

of class level has example PPD
𝑃𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 ∈ 𝐶𝑙𝑎𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝑃𝑃𝐷

Overloading An operator category who is a member

of class level has example OMR
𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ∈ 𝐶𝑙𝑎𝑠𝑠_𝑙𝑒𝑣𝑒𝑙 ∩

∋ ℎ𝑎𝑠𝐸𝑥𝑎𝑚𝑝𝑙𝑒. 𝑂𝑀𝑅

Table 4. Logical Table

Operator Characteristic

Concept name Axiom description Logical expression

Conditional_bound An operator example who is a member

of Conditional has characteristic non

redundant

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑏𝑜𝑢𝑛𝑑 ∈ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑁𝑜𝑛𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

AOI An operator example who is a member

of Arithmetic possible equivalent
𝐴𝑂𝐼 ∈ 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 ∩∋ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

COI An operator example who is a member

of Conditional possible equivalent
𝐶𝑂𝐼 ∈ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∩∋ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

ROR An operator example who is a member

of Relational has characteristic

redundant

𝑅𝑂𝑅 ∈ 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

IHI An operator example who is a member

of Inheritance has characteristic

redundant

𝐼𝐻𝐼 ∈ 𝐼𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

Return_values An operator example who is a member

of Others has characteristic

nonredundant

𝑅𝑒𝑡𝑢𝑟𝑛_𝑣𝑎𝑙𝑢𝑒 ∈ 𝑂𝑡ℎ𝑒𝑟𝑠 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑁𝑜𝑛𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

Member_variable An operator example who is a member

of Others has characteristic

nonredundant

𝑀𝑒𝑚𝑏𝑒𝑟_𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ∈ 𝑂𝑡ℎ𝑒𝑟𝑠 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑁𝑜𝑛𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

CRP An operator example who is a member

of Subtraditional has characteristic

redundant

𝐶𝑅𝑃 ∈ 𝑆𝑢𝑏𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

SDL An operator example who is a member

of Subtraditional has characteristic

redundant

𝑆𝐷𝐿 ∈ 𝑆𝑢𝑏𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ∩
∋ ℎ𝑎𝑠𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐. 𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

57

Table 5. Logical Table

Operator Equivalency

Concept name Axiom description Logical expression

OAN An operator example who is a member

of Overloading possible equivalent
𝑂𝐴𝑁 ∈ 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑖𝑛𝑔 ∩∋ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

JSI An operator example who is a member

of Java_specific_features possible

equivalent

𝐽𝑆𝐼 ∈ 𝐽𝑎𝑣𝑎_𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∩
∋ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒. 𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

V. CONSISTENCY

Redundancy in instances could lead to inconsistent

ontology which could reduce the practicality of the

ontology itself. For this context ontology, Protégé is used

for ontology development [40]. There are some reasoners

provided by Protégé to determine the class inconsistencies

and discovering implicit information. Pellet [41] and

FACT++ [42] reasoner are used for consistency checking.

The ontology is cautiously checked first before starting the

reasoner. Any inconsistencies in concepts, relationships,

and labeling were removed. Then, first open source

reasoner, Pellet [41] were applied for reasoning. This open

source reasoner is able to handle the growing of OWL

ontologies. The validation for context ontology is using

Protégé tools. It will send out error messages if the query

detected any inconsistent relationship. To make sure the

ontology is well checked, this experiment also used

FACT++ for evaluating the ontology. The result shows no

error which mean there are no redundancies in the

concepts. DL expressivity includes attribute language, full

existential qualification, inverse properties, and functional

properties. Fig. 11 shows the result of consistency checking

and it is proved that proposed ontology is coherent and

consistent. The context ontology only incorporates five

main classes and is fully focused on Java operator context,

thus, explained the reason only consistency checking for

validation is chosen.

Fig. 10. Consistency checking

VI. ONTOLOGY QUALITY

There is no single best or preferred approach to evaluate

ontology. The choice of a suitable approach to ontology

must depend on the purpose of evaluation, the application

in which the ontology is to be used, and on the aspect of the

ontology that needs to be evaluated [61].

For this ontology, the evaluation is based on ten simple

criteria proposed by Burton-Jones et al. (2005): lawfulness,

richness, interpretability, consistency, clarity,

comprehensiveness, accuracy, relevance, authority and

history [60]. In evaluating the correctness of the ontology,

the finding revealed that it satisfied six out of the 10

characteristics identified in Burton-Jones et al., although

only eight characteristics (lawfulness, richness,

interpretability, consistency, clarity, comprehensiveness,

accuracy and relevance) were relevant to the evaluation

given its recentness. As the ontology is further refined,

improvements will be made to address those characteristics

that were not satisfied to strengthen the ontology structure

and content.

VII.DISCUSSION AND FUTURE WORK

In the first phase, the ontology for Java operators in

mutation testing was implemented. There is plenty of Java

operators defined nowadays and that value keep increasing

due to changes made in Java system. The testing tools

invented cannot afford new Java system and some of them

only focused on several operators. Just like PIT [43], [44],

Mujava [45] [46], these two tools only used selected

operators during Java program testing.

The context ontology in this paper focused on Java

operators’ characteristic and specification. This proposed

ontology went into details of each subdomain, explaining

the concepts, relationship, and axioms in Java operators.

This research contributes to consistency, accuracy, and

relationship of context ontology. The ontology has defined

every axioms involved, correct hierarchies level, and table

to relate one concept with another correctly. This ontology

has explained the information of the operators from general

to specific characteristic. General information in this

perspective means the main characteristics such as

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

58

traditional operator, general operator, method level

operator and class level operator. These four main

characteristics could be found in all Java tools. On the other

hand, the specific characteristics include redundant

operators, non-redundant operators, deletion operators and

equivalency. This ontology has specified and listed all the

possible operators within specific characteristic and most

important thing is equivalency. Till now, there are still no

Java tools that automatically detect equivalency. Hence,

with the help of ontology, the development of Java tool for

mutation testing would be easy and well improved by

adding equivalency.

In short, this proposed ontology is able to help the

developers to develop testing tool that specifically focus on

Java. Besides, it also helps future researcher defining

operators as well as their characteristic. This proposed

ontology can be then be used as a basis for some

applications in a suite of Java testing tools. That is why this

ontology carefully defined all the operators from various

testing tools and standardized all the operators’ name. So,

standardization is important for future use of Java

operators.

VIII.CONCLUSION

Thus this paper presents a step-by-step construction of

context ontology for Java operators including concepts,

axioms, and relations between concepts. The main purpose

of this proposed ontology is to standardize the name and

the characteristic of operators as well as documenting all

the context knowledge for end user. This will help the

development of mutation testing tool for Java program in

the future. Besides, this documentation will help in many

ways for Java tool improvement especially in equivalency

detection, redundant and non-redundant detection, and

deletion operator detection. There are a lot of improvement

that will be made in mutation testing area with regards to

this proposed ontology. The changes in Java programming

language had forced researcher to implement a new testing

tool in order to reach full testing inspection.

This proposed ontology is a new finding in Java

operators but not in mutation testing. Some of the

researchers have already implemented ontology in

mutation testing. But, for Java operators this will ease the

tool construction to be more efficient in testing area. So, it

is possible for this ontology to become more developed and

complex in the future as end users update new knowledge.

ACKNOWLEDGEMENTS

The authors would like to thank Ministry of Higher Education

Malaysia for sponsoring the research through the Fundamental

Research Grant entitled Search-Based Mobile Applications Test

Data Generation Model and Universiti Teknologi Malaysia for

providing the facilities and support for the research.

REFERENCES

[1] A. Gomez-Perez, M. Fernandez-Lopez and O. Corcho.

(2004). Ontological Engineering: With Examples from the

Areas of Knowledge Management, Ecommerce and the

Semantic Web. Springer.

[2] T. R. Gruber. (1993). A Translation Approach to Portable

Ontology Specifications. Knowledge Acquisition, 5, 199-

220.

[3] T. R. Gruber. (1993). Towards Principles for the Design of

Ontologies Used for Knowledge Sharing. In Guarino, N.,

Poli, R., (Eds.). Formal Ontology in Conceptual Analysis

and Knowledge Representation, Deventer. The

Netherlands, Kluwer Academic Publishers.

[4] M. Cristani and R. Cuel. (2005). A Survey on Ontology

Creation Methodologies. International Journal on Semantic

Web and Information Systems (IJSWIS), 1(2), 49-69.

[5] M. F. López, A. Gómez-Pérez, J. P. Sierra and A. P. Sierra.

(2013). Building a Chemical Ontology Using Methontology

and the Ontology Design Environment. IEEE Intelligent

Systems and Their Applications, 14(1), 37-46. Horrocks, I.

(1999). What are Ontologies Good For? In Evolution of

Semantic Systems (pp. 175-188). Springer Berlin

Heidelberg.

[6] M. Rospocher and L. Serafini. (2012). An Ontological

Framework for Decision Support. Joint International

Semantic Technology Conference (pp. 239-254). Springer,

Berlin, Heidelberg.

[7] C. Bartolini. (2016). Mutating OWLs: Semantic Mutation

Testing for Ontologies.

[8] R. M. Hierons, M. Harman and S. Danicic. (1999). Using

Program Slicing to Assist in the Detection of Equivalent

Mutants. Software Testing. Verication and Reliability, 9(4):

233-262.

[9] M. Uschold and M. Gruninger. (1996). Ontologies:

Principles, Methods and Applications. The Knowledge

Engineering Review, 11(2), 93-136.

[10] M. Poveda Villalon, M. C. Suárez-Figueroa and A. Gómez-

Pérez. (20100. A Double Classification of Common Pitfalls

in Ontologies.

[11] R. Jasper and M. Uschold. (1999). A Framework for

Understanding and Classifying Ontology Applications.

Proceedings 12th Int. Workshop on Knowledge Acquisition,

Modelling, and Management KAW, 99, 16-21.

[12] S. Lee, X. Bai and Y. Chen. (2008). Automatic Mutation

Testing and Simulation on OWL-S Specified Web Services.

Simulation Symposium, 2008. ANSS 2008. 41st Annual (pp.

149-156). IEEE.

[13] R. Wang and N. Huang. (2008). Requirement Model-based

Mutation Testing for Web Service. Next Generation Web

Services Practices, 2008. NWESP'08. 4th International

Conference on (pp. 71-76). IEEE.

[14] X. Wang, N. Huan and R. Wang. (2009). Mutation Test

based on OWL-S Requirement Model. Web Services, 2009.

ICWS 2009. IEEE International Conference on (pp. 1006-

1007). IEEE.

[15] D. Hamlet. (1992). Are We Testing for True Reliability?

IEEE Software, 9(4), 21-27.

[16] D. Schuler, V. Dallmeier and A. Zeller. (2009). Ecient

Mutation Testing by Checking Invariant Violations.

Technique Report, Saarland University, Saarbrucken,

Telefon,

[17] M. S. Tuloli, B. Sitohang and B. Hendradjaya. (2016).

Regex Based Mutation Testing Operator Implementation.

Data and Software Engineering (ICoDSE). 2016

International Conference on (pp. 1-6). IEEE.

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

59

[18] J. Offutt and P. Ammann. (2008). Introduction to Software

Testing (p. 27). Cambridge: Cambridge University Press.

[19] A. G. Fabio and D. Dipankar. (2004). Anomaly Detection

Using Real-Valued Negative Selection. Division of

Computer Science, University of Memphis, Memphis, TN.

[20] Y. S. Ma and J. Offutt. (2005). Description of Class

Mutation Mutation Operators for Java. Electronics and

Telecommunications Research Institute, Korea.

[21] D. Schuler and A. Zeller. Javalanche. (2009). Efficient

Mutation Testing for Java. Proceedings of the the 7th Joint

Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (pp. 297-298). ACM.

[22] S. W. Kim, J. A. Clark, and J. A. McDermid. (2001).

Investigating the Effectiveness of Object‐oriented Testing

Strategies Using the Mutation Method. Software Testing,

Verification and Reliability, 11(4), 207-225.

[23] S. Kim, J. Clark, and J. McDermid. (1999). The Rigorous

Generation of Java Mutation Operators using HAZOP.

Informe técnico, The University of York.

[24] S. W. Kim, J. Clark and J. McDermid. (1999). Assessing

Test Set Adequacy for Object Oriented Programs Using

Class Mutation. 28 JAIIO: Symposium on Software

Technology.

[25] S. Kim, J. A. Clark and J. A. McDermid. (2000). Class

Mutation: Mutation Testing for Object-oriented Programs.

Proc. Net. ObjectDays (pp. 9-12).

[26] S. W. Kim, J. A. Clark and J. A. McDermid. (2001).

Investigating the Effectiveness of Object‐oriented Testing

Strategies Using the Mutation Method. Software Testing,

Verification and Reliability, 11(4), 207-225.

[27] Y. S Ma, Y. R. Kwon and J. Offutt. (2002). Inter-class

Mutation Operators for Java. Software Reliability

Engineering, 2002. ISSRE 2003. Proceedings. 13th

International Symposium on (pp. 352-363). IEEE.

[28] R. T. Alexander, J. M. Bieman, S. Ghosh and B. Ji. (2002).

Mutation of Java Objects. Software Reliability Engineering,

2002. ISSRE 2003. Proceedings 13th International

Symposium on (pp. 341-351). IEEE.

[29] Y. Jia and M. Harman. (2011). An Analysis and Survey of

the Development of Mutation Testing. IEEE Transactions

on Software Engineering, 37(5), 649-678.

[30] S. Kim, J. A. Clark and J. A. McDermid. (2000). Class

Mutation: Mutation Testing for Object-oriented Programs.

Proc. Net. ObjectDays (pp. 9-12).

[31] Y. S. Ma, Y. R. Kwon and J. Offutt. (2002). Inter-class

Mutation Operators for Java. Software Reliability

Engineering, 2002. ISSRE 2003. Proceedings. 13th

International Symposium on (pp. 352-363). IEEE.

[32] N. F. Noy and D. L. McGuinness. (2001). Ontology

Development 101: A Guide to Creating Your First

Ontology.

[33] M. Umar. (2006). An Evaluation of Mutation Operators for

Equivalent Mutants. Project Report, MSc in Advanced

Software Engineering, Department of Computer Science,

King’s College London, London, UK.

[34] Y. S. Ma and J. Offutt. (2005). Description of Class

Mutation Mutation Operators for Java. Electronics and

Telecommunications Research Institute, Korea.

[35] R. Just, G. M. Kapfhammer and F. Schweiggert. (2012).

Using Non-redundant Mutation Operators and Test Suite

Prioritization to Achieve Efficient and Scalable Mutation

Analysis. Software Reliability Engineering (ISSRE), 2012

IEEE 23rd International Symposium on (pp. 11-20). IEEE.

[36] M. E. Delamaro, J. Offutt and P. Ammann. (2014).

Designing Deletion Mutation Operators. Software Testing,

Verification and Validation (ICST), 2014 IEEE Seventh

International Conference on (pp. 11-20). IEEE.

[37] L. Madeyski, W. Orzeszyna, R. Torkar and M. Jozala.

(2014). Overcoming the Equivalent Mutant Problem: A

Systematic Literature Review and A Comparative

Experiment Of Second Order Mutation. IEEE Transactions

on Software Engineering, 40(1), 23-42.

[38] D. Klischies and K. Fögen. (2016). An Analysis of Current

Mutation Testing Techniques Applied to Real World

Examples. Full-scale Software Engineering/Current

Trends in Release Engineering, 13.

[39] L. Deng, J. Offutt, P. Ammann and N. Mirzaei. 2017.

Mutation Operators for Testing Android Apps. Information

and Software Technology, 81, 154-168.

[40] N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.

Fergerson and M. A. Musen. (2001). Creating Semantic

Web Contents with Protege-2000. IEEE intelligent Systems,

16(2), 60-71.

[41] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur and Y. Katz.

Pellet. (2007). A Practical Owl-dl Reasoner. Web

Semantics: Science, Services and Agents on the World Wide

Web, 5(2), 51-53.

[42] T. Huang, W. Li and C. Yang. (2008). Comparison of

Ontology Reasoners: Racer, Pellet, Fact++. In AGU Fall

Meeting Abstracts. Dec.

[43] H. Coles, T. Laurent, C. Henard, M. Papadakis and A.

Ventresque. (2016). PIT: A Practical Mutation Testing Tool

for Java. Proceedings of the 25th International Symposium

on Software Testing and Analysis (pp. 449-452). ACM.

[44] T. Laurent, M. Papadakis, M. Kintis, C. Henard, Y. Le

Traon and A. Ventresque. (2017). Assessing and Improving

the Mutation Testing Practice of PIT. Software Testing,

Verification and Validation (ICST), 2017 IEEE

International Conference on (pp. 430-435). IEEE.

[45] M. Kintis, M. Papadakis, A. Papadopoulos, E. Valvis and

N. Malevris. (2016). Analysing and Comparing the

Effectiveness of Mutation Testing Tools: A Manual Study.

Source Code Analysis and Manipulation (SCAM), 2016

IEEE 16th International Working Conference on (pp. 147-

156). IEEE.

[46] M. Delahaye and L. Du Bousquet. (2013). A Comparison of

Mutation Analysis Tools for Java. Quality Software (QSIC),

2013 13th International Conference on (pp. 187-195).

IEEE.

[47] A. Lozano-Tello and A. Gómez-Pérez. (2004). Ontometric:

A Method to Choose the Appropriate Ontology. Journal Of

Database Management, 2(15), 1-18.

[48] F. J. López-Pellicer, L. M. Vilches-Blázquez, J. Nogueras-

Iso, O. Corcho, M. A. Bernabé and A. F. Rodríguez. (2008).

Using a Hybrid Approach for the Development of an

Ontology in the Hydrographical Domain.

[49] O. Corcho, M. Fernández-López and A. Gómez-Pérez.

(2003). Methodologies, Tools and Languages for Building

Ontologies. Where is Their Meeting Point? Data &

Knowledge Engineering, 46(1), 41-64.

[50] O. Corcho, M. Fernandez-Lopez, A. Gómez-Perez and A.

Lopez-Cima. (2005). Building Legal Ontologies with

METHONTOLOGY and WebODE. Law and the Semantic

Web (pp. 142-157). Springer Berlin Heidelberg.

[51] T. A. Budd and A. S. Gopal. (1985). Program Testing by

Specification Mutation, Computer Languages. 10, 63-73.

[52] J. S. Bradbury, J. R. Cordy, and J. Dingel. (2006). Mutation

Operators for Concurrent Java (J2SE 5.0). Mutation

Analysis, 2006. Second Workshop on (pp. 11-11). IEEE.

[53] Y. S. Ma, Y. R. Kwon and J. Offutt. (2002). Inter-class

Mutation Operators for Java. Software Reliability

Sherolwendy Sualim, Radziah Mohamad & Nor Azizah Saadon / IJIC Vol. 8:2(2018) 49-60

60

Engineering, 2002. ISSRE 2003. Proceedings. 13th

International Symposium on (pp. 352-363). IEEE.

[54] R. T. Alexander, J. M. Bieman, S. Ghosh, and J. Bixia.

(2002). Mutation of Java Objects. 13th International

Symposium on Software Reliability Engineering. pp. 341-

351. Fort Collins. CO USA.

[55] Y. S. Ma and J. Offutt. (2005). Description of Method-level

Mutation Operators for Java. Electronics and

Telecommunications Research Institute, Korea, Tech. Rep.

[56] Y. S. Ma, J. Offutt and Y. R. Kwon. (2006). MuJava: A

Mutation System for Java. Proceedings of the 28th

International Conference on Software Engineering (pp.

827-830). ACM.

[57] L. Madeyski and N. Radyk. Judy. (2010). A Mutation

Testing Tool for Java. IET Software, 4(1), 32-42.

[58] R. Just, F. Schweiggert and G. M. Kapfhammer. MAJOR.

(2011). An Efficient and Extensible Tool for Mutation

Analysis in a Java Compiler. Automated Software

Engineering (ASE), 2011 26th IEEE/ACM International

Conference on (pp. 612-615). IEEE.

[59] D. Schuler and A. Zeller. Javalanche. (2009). Efficient

Mutation Testing for Java. Proceedings of the the 7th Joint

Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering (pp. 297-298). ACM.

[60] A. Burton-Jones, V. C. Storey, V. Sugumaran and P.

Ahluwalia. (2005). A Semiotic Metrics Suite for Assessing

the Quality of Ontologies. Data & Knowledge Engineering,

55(1), 84-102.

[61] J. Brank, M. Grobelnik and D. Mladenić. (2005). A Survey

of Ontology Evaluation Techniques.

