
International Journal of Innovative Computing 8(3) 1-8

1

Automating Penetration Testing Within An

Ambiguous Testing Environment

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd Shaid

Faculty of Computing, Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

lim0709@gmail.com, afida@utm.my, szainudeen@utm.my

Submitted: 12/01/2018. Revised edition: 25/05/2018. Accepted: 27/05/2018. Published online: 21 November 2018

Abstract—Automated web application penetration testing has

emerged as a trend. The computer was assigned the task of

penetrating web application security with penetration testing

technique. Relevant computer program reduces time, cost, and

resources required for assessing a web application security. At

the same time, scaling down tester reliance on human knowledge.

Web application security scanner is such kind of program that is

designed to assess web application security automatically with

penetration testing technique. The downside is that computer is

not well-formed as human. Consequently, web application

security scanner often found generating the false alarms,

especially in a testing environment, which web application source

codes are unreachable. Thus, in this paper, the state-of-the-art of

black box web application security scanner is systematically

reviewed, to investigate the approaches for detecting web

application vulnerability in an ambiguous testing environment.

This survey is critical in providing insights on how to design

efficient algorithms for assessing web application security with

penetration testing technique in the ambiguous environment.

Keywords—Penetration testing, Web application security scanner,

False alarm, Ambiguous testing environment

I. INTRODUCTION

Expansion in computer's computation power plus

creativity of researchers in creating the efficient algorithms to

simulate the task of web application penetration testing has

resulted in an introduction of a computer program known as

web application security scanner. In addition to that,

automated web application penetration testing is becoming

ubiquitous with increases in usage of web application security

scanner in web application penetration testing's methodology.

Assorted algorithms were deriving from the fundamental

white box, black box, or grey box testing technique for

instructing computer assessing web application security

automatically with penetration testing technique. Derived

white box testing techniques statically parsed web application

sources code to locate web application vulnerability.

Alternatively, derived black box testing techniques

dynamically examines web application execution behaviours

to detect anomaly that proving existence of web application

vulnerability. [1], [2]. On the other hand, derived hybrid

testing techniques leveraged both white box and black box

testing techniques stated in [3], [4]. The intention of

integrating both white box and black box testing techniques is

to improve the test coverage, while reduces white box and

black box web application security scanners false alarms as

advertised in [5]–[7].

The automated web application penetration testing is

achievable by translating related testing technique into an

executable algorithm. However, the corresponding activity is

challenging, considering that a computer is merely a dummy

machine that performs the calculation based on predefined set

of instructions. The computer neither able to self-learning nor

responds heuristically to unexpected events. Therefore,

whenever web application security scanner is assessing a web

application security within the ambiguous environment, false

alarms are produced.

Unreachable web application source code, and

unpredictable web application events, actions, and responses

are what create the ambiguous environment, or so-called black

box testing environment. Moreover, a web application always

behaves differently to diverse data that entering the web

application's data entry point. Dealing with such ambiguity is

challenging. Therefore, false alarms often found reported by

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

2

the black box web application security scanner. Black box

web application security scanner produces false positives that

mistakenly interpret valid execution behaviours as

vulnerability or false negatives that describes the missed

vulnerability [2], [8].

In [1], [9]–[12], quality of black box web application

security scanners was quantified. Experimental outcomes of

[13]–[15] shown problem of false positive and false negative

is severe in existing black box web application security

scanners. Consequently, this paper reviews the state-of-the-art

of black box web application security scanner for clarifying

their strengths and limitations in detecting web application

vulnerability within the ambiguous testing environment. In

this paper, following items are deliverable:

 Strengths and limitations of web application security

scanners in assessing web application security with

penetration testing technique within the ambiguous

testing environment.

 Factors that caused black box web application

security scanners generate false alarms.

 State-of-the-art of black box web application security

scanners.

The remaining part of the manuscript comprised of

following sections. Section two defines web application

security scanner and its general architecture. In Section three,

the state-of-the-art of black box web application security is

systematically reviewed. The related works are elaborate in

Section four. Subsequently, Section five discusses the

outcome of the literature review. Finally, Section six

concluded the paper.

II. WEB AAPLICATION SECURITY SCANNER

Web application security scanner is a computer program

that automatically scans a web application for web application

vulnerability detection. This computer program simulates

penetration tester's activity, penetrating web application attack

vectors with selected attack payload to detect web application

vulnerabilities [16]–[19],

Presently, three classes of web application security scanner

namely white box, black box, and hybrid web application

security scanners are available. White box web application

security scanner parsing web application source code,

statically tracking the propagation of malicious data from

source to sink to detect web application vulnerability by

detects changes in the semantics of web application source

code. [20], [21]. On the other hand, the black box web

application security scanner detects web application

vulnerability by dynamically executing under-test web

application on a web browser, analysing web application

responses for the existence of anomaly [18], [22]. In the

meanwhile, hybrid web application security scanner detects

web application vulnerability by integrating both testing

techniques of white box and black box web application

security scanners [23].

Fig. 1. General architecture of black box web application security

scanner

Web application security scanner dynamically executes

under-test web application on a web browser to solve the

challenge of assessing web application security, under a

circumstance that web application source code is unreachable.

Implemented reverse engineering algorithms mined web

applications' DOM document for data entry point discovery.

Subsequently, selected malicious texts are injecting into

identified data entry points. If the malicious data was

successfully triggering the web application abnormal

execution behaviours, vulnerability is deemed present, or vice

versa. Therefore, a web application security scanner that can

assess web application security in the ambiguous testing

environment generally comprised of three set of algorithms as

stated in [24]–[26]. The first set of algorithms reverse

engineers web application for reconnaissance purpose. The

second set of algorithms penetrating web application security

with designated malicious data. Lastly, the third set of

algorithms detects web application vulnerability by analysing

web application responses for the occurrence of anomalies, as

depicted in Fig. 1.

III. STATE-OF-THE-ART OF AUTOMATED BLACK

BOX WEB APPLICATION PENETRARTION TESTING

Addressing the challenge of automated web application

vulnerability assessment with penetration testing technique, in

the ambiguous testing environment, had led to the invention of

algorithms like [22], [27]. This section is about reviewing the

state-of-the-art of the corresponding algorithms.

A. Reverse Engineer Web Application

Invented reverse engineering algorithms have a critical

role in dynamically executing a web application for

reconnaissance purpose. These reverse engineering algorithms

load under-test web application on a web browser to mine

DOM documents for data entry points, submitting data to the

web server, and interact with active web elements for

navigation purpose. Introduced reverse engineering algorithm

generally is a web crawler that usually contains a DOM

parser, a client-side executor, and a robot. DOM parser

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

3

responsible for mining DOM document to retrieve active web

elements. The client-side executor has client-side scripts

executed. Lastly, the robot is critical in interacting with found

web elements and inputting web forms with valid data [28]–

[31].

Since some events, web pages, or web contents are

retrievable only if valid data is inputting to the web

application. Therefore, algorithms that capable of submitting

legitimate data to the back-end server is critical in addressing

a research problem known as hidden web crawling. An initial

version of the corresponding algorithms attempts to mitigate

hidden web crawling problem by inputting web application

with random data, or halted web crawling process for inquiry

of input value from the tester. However, because of randomly

generated data was discovered often failed in bypassing the

input sanitization function. Moreover, halting the crawling

process for inquiring of an input value from the tester is

computationally inefficient. Researchers had suggested more

sophisticated algorithms, which select appropriate input value

from a custom-made library, after extracting semantics of the

data entry points. These algorithms extract semantics of web

forms. Afterward, retrieve suitable input value from a library

by searching for the matched keywords using string distance

calculation algorithm. An algorithm knowing as LITE

(Layout-based information algorithm) was suggested by [32]

for extracting web form semantics. In the meanwhile, [19],

[22] propose IKM (Information Knowledge Manager) for

inputting web forms with legitimate data. Besides this,

SmartProfiles and Google Fusion Table are the two custom-

made libraries proposed by [32] and [33] respectively.

Model checking technique had adopted by web application

security scanner for modelling web application execution

behaviours. This model checking technique records web

application navigations using an abstract model likes finite

state machine, tree graph, or flow diagram [34]–[36], to

achieve the state-aware web crawling. Nevertheless, state

explosion can be a severe limitation for model checking

technique. Hence, state pruning algorithms are proposed to

prevent state explosion by reducing the size of an abstract

model, by distinguishing previously visited states from those

newly discovered. Classification of web application states is

computed by calculates string distances or tree structures of

visited DOM documents, using string distance calculation

algorithms such as Levenshtein's algorithm or SimHash [37],

[38]. A new state is deemed existed if DOM documents of

visited web pages are found different, with a new node is

added to the generated abstract model. [39] had builds relevant

formulas for calculating occurrence of state change, with

colouring technique was introduce for systematically adding a

newly discovered state to the abstract model. In addition to

that, an algorithm that for pruning the size of an abstract

model is introduced by researchers to address state explosion

problem, while handling modern web application dynamic

execution behaviours. The corresponding algorithm eliminates

infinite sections of retrieved DOM documents, to look for idle

sections [36].

B. Penetrating the Attack Vector

Brute forcing techniques had been widely practiced by

existing black box web application security scanner for

penetrating the web application security. Fuzzing technique

populates web application attack vector with randomly

generated data, with an assumption the attack vector is

comprisable with generated random data. However, because

of random data is easily sanitized by the defensive mechanism

of a web application [27], [40]. Therefore, alternate fuzzing

technique that generates attack codes based on attack vector

semantics is applied to increase the likelihood of successful

exploitation.

Given that some web application vulnerabilities like SQL

injection, cross-site scripting, cross-site request forgery are

detectable only with selected malicious data. For instance,

SQL injection attack is achievable only with malicious SQL

query. In the meanwhile, cross-site scripting attack requiring

injection of malicious client-side scripts. Therefore, another

brute forcing technique knowing as fault injection is proposed

by [1], [22], [41]. This fault injection technique brute forcing

web application attack vectors with selected attack codes of an

attack library for penetrating web application security.

Unfortunately, attack codes of an attack library always limited

in number and low in variety. Moreover, major attack library

does not receive often update as stated in [42], [43].

Consequently, web application security scanners often found

failed in penetrating the attack vector security. This lead to

proposing of an algorithm for evolving or mutating attack

codes of an attack library with mutating and crossover

operators of the genetic algorithm [3], [40], [44]. In the

meanwhile, a learning-based algorithm was introduced by [3]

for expanding the attack coverage, while improving usage of

computer's computation resource, by eliminating the need of

brute forcing attack vector with attack codes of attack library

exhaustively.

C. Detecting the Anomaly

The black-box web application security scanner detects

web application vulnerability by locating the anomaly. Since

anomalies are always some string of texts. Assorted string

matching or string distance calculation algorithms are used in

existing black box web application security scanners to detect

web application vulnerability.

Signature or learning based vulnerability detection

algorithms are what implemented in existing web application

security scanner for locating the malicious string of texts. The

learning-based algorithm compares string distance of URLs,

system commands, or DOM documents learned with innocent

and malicious input to define the availability of anomaly.

Assorted string distance algorithms like SimHash,

Levenshtein's algorithm, Jarod's algorithm was implemented

to identify the anomaly. In addition to that, an experimentation

was conducted for studying the effectiveness of relevant string

distance algorithms. Related experiment outcomes are

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

4

retrievable in [45]. Besides this, a set of security rules is

deriving from learned execution behaviours, to support the

statement that under-test web application is vulnerable to

malicious data injected. Several security rules were defined by

[2], [46], [47] for showcasing successful SQL injection or

cross-site scripting attacks.

In the meanwhile, signature-based algorithms detect web

application vulnerability by searching web application

responses to locate a specific string of malicious text. Most of

the time, string pattern matching algorithms like Boyer's string

matching algorithm [48], [49] are used to detect the malicious

data. Detecting vulnerability likes cross-site scripting

requiring the algorithm searching web application responses

for malicious client-side scripts. On the other hand, SQL

injection is detected by analysing generated SQL query for the

existence of attack code, or to define whether there is a raised

of exceptions by database management system on web

application's web page [50]–[52].

IV. RELATED WORKS

Experiments were conducted by researchers for

quantifying black box web application security scanner

quality. In these experiments, black box web application

security scanners were configured to scan selected test-beds,

which are very vulnerable web applications equipped with

known web application vulnerabilities. Quality of a black box

web application security scanner is defined by calculates the

number of detected web application vulnerability. Experiment

outcomes of [53]–[55] shown black box web application

security scanners are perform well in detecting simple

injection-based vulnerabilities like reflected SQL injection and

cross-site scripting. Nevertheless, black box web application

security scanners contain weaknesses like low in test coverage

and tend to generate false alarms such as false positives and

false negatives [6], [56]–[58].

V. DISCUSSION

Assorted algorithms were invented by practitioners to

enable black box web application security scanner conducts

automated web application penetration testing without having

to access to web application source code. Suggested reverse

engineering algorithms crawl web application to interpret web

application execution behaviours while inputting web

application with data to mitigate hidden web crawling

problem. However, because hidden web contents were

revealed only with valid data were inputted. Moreover,

designing a sophisticated algorithm to input each data entry

point with appropriate data is challenging due to the ambiguity

of semantic of data entry points. Major hidden data entry

points and attack vectors of the under-test web application are

hard to reach. Consequently, some part of web applications

not successful included in the automated web application

penetration testing, with the generation of false negatives by

black box web application security scanners.

Brute forcing techniques like fault injection and fuzzing

are leverage by web application security scanners for

penetrating web application security. The web application

security scanners brute force found attack vectors with

selected attack codes of an attack library for compromising a

web application confidentiality, integrity, or availability. But

because writing an efficient attack code that manages to

bypass the input sanitization function is as challenging as

creating an algorithm for inputting the web forms. In addition

to that, attack codes of an attack library always limited in

number and variety. As a result, most exploitation performed

on discovered attack vectors is fail.

The presence of web application vulnerabilities as a string

of text has promoted usage of learning-based and signature-

based vulnerability detection for detecting the web application

vulnerabilities. These algorithms search or compare web

application responses for detecting web application

vulnerabilities. Weaknesses of existing vulnerability detection

algorithms are that they are too conservative. For instance, the

appearance of exceptions on DOM documents does not

necessary means web application is vulnerable to SQL

injection. Raised exceptions could be caused by improper

database configuration or failure of establishing the secure

connection to a database. Therefore, signature-based and

learning-based algorithms were found having difficulty in

detecting successful exploitations, especially those web

application vulnerabilities, which embedded within

complicated computation steps.

In summary, the challenge of achieving automated web

application penetration testing within the ambiguous testing

environment is at designing sophisticated algorithms for

interpreting and understanding the semantics of under-test

web application with an absence of source codes. These

algorithms are playing a critical role in enabling web

application security scanner locates the data entry points or

attack vectors, select suitable attack codes from attack library,

as well as knowing the location to look for successful

exploitations [3], [59]–[61]. Table I summarized algorithms

proposed by researchers for addressing challenges of

performing the automated web application penetration testing

on the ambiguous testing environment.

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

5

TABLE I. THE SUMMARY OF STATE-OF-THE-ART OF BLACK BOX WEB APPLICATION SECURITY SCANNERS

Components Research Problem Proposing approach Description Authors

Reverse

engineering.

Hidden web crawling. Authorization Authentication

Data Table.

An algorithm for bypassing web application authentication

scheme.

[2]

Information Knowledge

Manager.

Algorithms for inputting web forms with valid data. [22], [52]

Layout-based Information

Extraction Technique (LITE).

An algorithm for extracting web forms semantic. [32]

SmartProfiles/ Google Fusion. Libraries that providing the valid input values. [33], [62]

Interactive web crawling An algorithm for inputting web form by interrupting web

crawling process to request input value from tester.

Web application

modelling.

State-aware crawling. Algorithms for modelling web application navigations or event

with model checking technique.

[27], [39]

State change detection

algorithms.

Algorithms to detect occurrence of state change. [36], [39]

State explosion

prevention.

Elimination of infinite section. An algorithm for excluding web application infinite sections. [36]

Exploitation Penetrating attack

vectors security.

Brute forcing. Algorithm to penetrating web application attack vector with

random data.

[63], [64]

Fault injection. An algorithm for penetrating web application attack vector

with attack codes of an attack library.

[22]

Exploit mutations. Algorithms for evolving or mutating attack codes with genetic

algorithm.

[40], [65],

[66]

Vulnerability

detection

Detecting the

successful exploitation

Signature-based vulnerability

detection

Algorithms for detecting web application vulnerability by

examining web application response for specific string of text.

[50], [51]

Learning -based vulnerability

detection

Algorithms for detecting web application vulnerability by

identifying the violation of defined innocent execution

behaviours.

[67], [68]

VI. CONCLUSION

Leveraging the computer for automated web application

penetration testing is becoming a trend. Despite automated

web application penetration testing reduces time, cost, and

knowledge required. The automated web application

penetration testing is helpful in preserving the knowledge of

web application penetration testing. Given that web

application source code is not always accessible during an

automated web application penetration testing. Algorithms

are proposed by practitioners for assessing web application

security with penetration testing technique within the

ambiguous testing environment. Proposed reverse

engineering algorithms interpret contexts and semantics for

data entry points or attack vectors identification. In the

meanwhile, brute forcing algorithms are used to penetrate

web application security. Lastly, Proposed learning-based

and signature-based vulnerability detection algorithms

detect web application vulnerability by examining web

application responses to trace the anomaly. But, because of

web application source code is not accessible, interpreting

and understanding of contexts and semantics of an under-

test web application are becoming challenging.

Consequently, security of some part of the under-test web

application is not precisely accessed, selected attack codes

are failed in penetrating web application security, with

successful exploitations are not detectable. These

weaknesses elaborate why web application security scanners

are often found generating false alarms. Nowadays,

sophisticated algorithms are still needed to solve the

challenge of automatically assessing web application

security with penetration testing technique within the

ambiguous testing environment.

REFERENCES

[1] J. Fonseca, M. Vieira, and H. Madeira. (2007). Testing and

Comparing Web Vulnerability Scanning Tools for SQL

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

6

Injection and XSS Attacks. Dependable Computing, 2007.

PRDC 2007. 13th Pacific Rim International Symposium on,

365-372.

[2] X. Wang, L. Wang, G. Wei, D. Zhang, and Y. Yang. (2010).

Hidden Web Crawling for SQL Injection Detection.

Broadband Network and Multimedia Technology (IC-

BNMT), 2010 3rd IEEE International Conference on, 14-18.

[3] O. Tripp, O. Weisman, and L. Guy. (2013). Finding Your

Way in the Testing Jungle: A Learning Approach to Web

Security Testing. Proceedings of the 2013 International

Symposium on Software Testing and Analysis, 347-357.

[4] I. Medeiros, N. F. Neves, and M. Correia. 2014. Automatic

Detection and Correction of Web Application Vulnerabilities

Using Data Mining to Predict False Positives. Proceedings of

the 23rd international conference on World wide web, 63-74.

[5] L. Suto. (2010). Analyzing the Accuracy and Time Costs of

Web Application Security Scanners. San Franc. Febr.

[6] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. (2010). State

of the Art: Automated Black-box Web Application

Vulnerability Testing. Security and Privacy (SP), 2010 IEEE

Symposium on, 332-345.

[7] J. Fonseca, M. Vieira, and H. Madeira. (2007). Testing and

Comparing Web Vulnerability Scanning Tools for SQL

Injection and XSS Attacks. Dependable Computing, 2007.

PRDC 2007. 13th Pacific Rim International Symposium on,

365-372.

[8] Crawling the Content Hidden Behind Web Forms |

SpringerLink. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-540-74477-

1_31. [Accessed: 13-Dec-2017].

[9] L. Suto. (2007). Analyzing the Effectiveness and Coverage

of Web Application Security Scanners. San Franc. Oct.

[10] N. Antunes and M. Vieira. (2010). Benchmarking

Vulnerability Detection Tools for Web Services. Web

Services (ICWS), 2010 IEEE International Conference on,

203-210.

[11] Y. Makino and V. Klyuev. (2015). Evaluation of web

vulnerability scanners. Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications

(IDAACS), 2015 IEEE 8th International Conference on, 1,

399-402.

[12] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. (2010). State

of the Art: Automated Black-Box Web Application

Vulnerability Testing. Security and Privacy (SP), 2010 IEEE

Symposium on, 332-345.

[13] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan. (2013).

A Cost-effective Approach to Evaluating Security

Vulnerability Scanner. Network Operations and

Management Symposium (APNOMS), 2013 15th Asia-

Pacific, 1-3.

[14] H. Holm, T. Sommestad, J. Almroth, and M. Persson.

(2011). A Quantitative Evaluation of Vulnerability Scanning.

Inf. Manag. Comput. Secur, 19(4), 231-247.

[15] M. Parvez, P. Zavarsky, and N. Khoury. (2015). Analysis of

Effectiveness of Black-box Web Application Scanners in

Detection of Stored SQL Injection and Stored XSS

Vulnerabilities. Internet Technology and Secured

Transactions (ICITST), 2015 10th International Conference

for, 186-191.

[16] E. Fong and V. Okun. (2007). Web Application Scanners:

Definitions and Functions. System Sciences, 2007. HICSS

2007. 40th Annual Hawaii International Conference on,

280b-280b.

[17] P. Baral. 2011. Web Application Scanners: A Review of

Related Articles [Essay]. IEEE Potentials, 30(2), 10-14.

[18] M. Curphey and R. Arawo. (2006). Web Application

Security Assessment Tools. IEEE Secur. Priv., 4(4), 32-41.

[19] Y.-W. Huang and D. T. Lee. (2005). Web Application

Security—Past, Present, and Future. Computer Security in

the 21st Century, Springer, 183-227.

[20] F. Alssir and M. Ahmed. (2012). Web Security Testing

Approaches: Comparison Framework. Proceedings of the

2011 2nd International Congress on Computer Applications

and Computational Science, 163-169.

[21] J. Thomé, A. Gorla, and A. Zeller. (2014). Search-based

Security Testing of Web Applications. Proceedings of the

7th International Workshop on Search-Based Software

Testing, 5-14.

[22] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.

(2003). Web Application Security Assessment by Fault

Injection and Behavior Monitoring. Proceedings of the 12th

international conference on World Wide Web, 148-159.

[23] Z. ÐURIĆ. (2014). WAPTT-Web Application Penetration

Testing Tool. Adv. Electr. Comput. Eng., 14(1).

[24] J.-M. Chen and C.-L. Wu. (2010). An Automated

Vulnerability Scanner for Injection Attack Based on

Injection Point. Computer Symposium (ICS), 2010

International, 113-118.

[25] M. Balduzzi, C. T. Gimenez, D. Balzarotti, and E. Kirda.

(2011). Automated Discovery of Parameter Pollution

Vulnerabilities in Web Applications. NDSS, 2011.

[26] D. Gol and N. Shah. (2015). Detection of Web Appication

Vulnerability based on RUP Model. Recent Advances in

Electronics & Computer Engineering (RAECE), 2015

National Conference on, 96-100.

[27] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. (2013).

LigRE: Reverse-engineering of Control and Data Flow

Models for Black-box XSS Detection. Reverse Engineering

(WCRE), 2013 20th Working Conference on, 252-261.

[28] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.

(2003). Web Application Security Assessment by Fault

Injection and Behavior Monitoring. Proceedings of the 12th

international conference on World Wide Web, 148-159.

[29] Y.-W. Huang and D. T. (2005). Web Application Security—

Past, Present, and Future. Computer Security in the 21st

Century, Springer, 183-227.

[30] Z. Djuric. (2013). A Black-box Testing Tool for Detecting

SQL Injection Vulnerabilities. Informatics and Applications

(ICIA), 2013 Second International Conference on, 216-221.

[31] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jÄk.

(2015). Using Dynamic Analysis to Crawl and Test Modern

Web Applications. International Workshop on Recent

Advances in Intrusion Detection, 295-316.

[32] S. Raghavan and H. Garcia-Molina. (2000). Crawling the

Hidden Web. Stanford.

[33] F. R. Muñoz and L. J. G. Villalba. (2015). Web from

Preprocessor for Crawling. Multimed. Tools Appl., 74(19),

8559-8570.

[34] M. E. Dincturk, G.-V. Jourdan, G. V. Bochmann, and I. V.

Onut. (2014). A Model-based Approach for Crawling Rich

Internet Applications. ACM Trans. Web TWEB, 8(3), 19.

[35] K. Benjamin, G. v Bochmann, G.-V. Jourdan, and I.-V.

Onut. (2010). Some Modeling Challenges When Testing

Rich Internet Applications for Security. Software Testing,

Verification, and Validation Workshops (ICSTW), 2010

Third International Conference on, 403-409.

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

7

[36] S. Choudhary, M. E. Dincturk, G. V. Bochmann, G.-V.

Jourdan, I. V. Onut, and P. Ionescu. (2012). Solving Some

Modeling Challenges When Testing Rich Internet

Applications for Security. Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International

Conference on, 850-857.

[37] E. van Eyk, W. van Leeuwen, M. A. Larson, and F.

Hermans. (2014). Performance of Near-duplicate Detection

Algorithms for Crawljax. Citeseer, 2014.

[38] O. Lounis, S. E. B. Guermeche, L. Saoudi, and S. E.

Benaicha. (2014). A New Algorithm for Detecting SQL

Injection Attack in Web Application. in Science and

Information Conference (SAI), 2014, 589-594.

[39] A. Doupé, L. Cavedon, C. Kruegel, and G. (2012). Enemy of

the State: A State-Aware Black-Box Web Vulnerability

Scanner. USENIX Security Symposium, 14.

[40] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz. (2014).

KameleonFuzz: Evolutionary Fuzzing for Black-box XSS

Detection. Proceedings of the 4th ACM conference on Data

and application security and privacy, 37-48.

[41] J. Fonseca and F. Matarese. (2013). Using Vulnerability

Injection to Improve Web Security. Innovative Technologies

for Dependable OTS-Based Critical Systems, Springer, 145-

157.

[42] P. Xiong, B. Stepien, and L. Peyton. (2009). Model-based

Penetration Test Framework for Web Applications using

TTCN-3. E-Technol. Innov. Open World, 141-154.

[43] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C.

Kruegel. (2010). A Solution for the Automated Detection of

Clickjacking Attacks. Proceedings of the 5th ACM

Symposium on Information, Computer and Communications

Security, 135-144.

[44] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri.

(2013). Andromeda: Accurate and Scalable Security

Analysis of Web Applications. FASE, 7793, 210-225.

[45] M. Zachara and D. Pa\lka. (2016). Comparison of Text-

Similarity Metrics for the Purpose of Identifying Identical

Web Pages During Automated Web Application Testing.

Information Systems Architecture and Technology:

Proceedings of 36th International Conference on

Information Systems Architecture and Technology–ISAT

2015–Part II, 25-35.

[46] E. Reshef, Y. El-Hanany, G. Raanan, and T. Tsarfati. (2007).

System for Determining Web Application Vulnerabilities,

7237265, Jun-2007.

[47] M. I. P. Salas and E. Martins. (2014). Security Testing

Methodology for Vulnerabilities Detection of Xss in Web

Services and Ws-security. Electron. Notes Theor. Comput.

Sci., 302, 133-154.

[48] A. Z. M. Saleh, N. A. Rozali, A. G. Buja, K. A. Jalil, F. H.

M. Ali, and T. F. A. Rahman. (2015). A Method for Web

Application Vulnerabilities Detection by Using Boyer-Moore

String Matching Algorithm. Procedia Comput. Sci., 72, 112-

121.

[49] T. F. A. Rahman, A. G. Buja, K. Abd, and F. M. Ali. (2017).

SQL Injection Attack Scanner Using Boyer-Moore String

Matching Algorithm. JCP, 12(2), 183–189.

[50] A. Z. M. Saleh, N. A. Rozali, A. G. Buja, K. A. Jalil, F. H.

M. Ali, and T. F. A. Rahman. (2015). A Method for Web

Application Vulnerabilities Detection by Using Boyer-Moore

String Matching Algorithm. Procedia Comput. Sci., 72, 112-

121.

[51] T. F. A. Rahman, A. G. Buja, K. Abd, and F. M. Ali. (2017).

SQL Injection Attack Scanner Using Boyer-Moore String

Matching Algorithm. JCP, 12(2), 183-189.

[52] Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T. Lee,

and S.-Y. Kuo. (2005). A Testing Framework for Web

Application Security Assessment. Comput. Netw., 48(5),

739-761.

[53] J. Bau, F. Wang, E. Bursztein, P. Mutchler, and J. C.

Mitchell. Vulnerability Factors in New Web Applications:

Audit Tools, Developer Selection & Languages.

[54] F. van der Loo. (2011). Comparison of Penetration Testing

Tools for Web Applications. PhD Thesis, Master’s thesis,

University of Radboud, Netherlands.

[55] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl. (2011).

An Analysis of Black-box Web Application Security

Scanners against Stored SQL Injection. Privacy, Security,

Risk and Trust (PASSAT) and 2011 IEEE Third Inernational

Conference on Social Computing (SocialCom), 2011 IEEE

Third International Conference on. 1095-1101.

[56] L. Suto. (2007). Analyzing the Effectiveness and Coverage

of Web Application Security Scanners. San Franc. Oct.,

2007.

[57] N. Antunes and M. Vieira. (2009). Comparing the

Effectiveness of Penetration Testing and Static Code

Analysis on the Detection of SQL Injection Vulnerabilities in

Web Services. Dependable Computing. PRDC’09. 15th

IEEE Pacific Rim International Symposium on, 301-306.

[58] M. Vieira, N. Antunes, and H. Madeira. 20090. Using Web

Security Scanners to Detect Vulnerabilities in Web Services.

Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP

International Conference on, 566-571.

[59] N. Antunes and M. Vieira. (2017). Designing Vulnerability

Testing Tools for Web Services: Approach, Components,

and Tools. Int. J. Inf. Secur., 16(4), 435-457.

[60] T.-B. Dao and E. Shibayama. (2010). Coverage Criteria for

Automatic Security Testing of Web Applications. ICISS,

111-124.

[61] T. B. Dao and E. Shibayama. (2011). Security sensitive Data

Flow Coverage Criterion for Automatic Security Testing of

Web Applications. International Symposium on Engineering

Secure Software and Systems, 101-113.

[62] M. Benedikt, J. Freire, and P. Godefroid. (2002). VeriWeb:

Automatically Testing Dynamic Web Sites. Proceedings of

11th International World Wide Web Conference (WW

W’2002.

[63] N. Antunes and M. Vieira. (2013). SOA-Scanner: An

Integrated Tool to Detect Vulnerabilities in Service-Based

Infrastructures. Services Computing (SCC). 2013 IEEE

International Conference on, 280-287.

[64] N. Antunes and M. Vieira. (2009). Detecting SQL Injection

Vulnerabilities in Web Services. Dependable Computing,

2009. LADC’09. Fourth Latin-American Symposium on, 17-

24.

[65] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl. (2011).

Testing and Assessing Web Vulnerability Scanners for

Persistent SQL Injection Attacks. Proceedings of the First

International Workshop on Security and Privacy Preserving

in e-Societies, 12-18.

[66] A. Avancini and M. Ceccato. (2013). Comparison and

Integration of Genetic Algorithms and Dynamic Symbolic

Execution for Security Testing of Cross-Site Scripting

Vulnerabilities. Inf. Softw. Technol., 55(12), 2209-2222.

Lim Kah Seng, Norafida Ithnin & Syed Zainudeen Mohd / IJIC Vol. 8:3(2018) 1-8

8

[67] N. Li, T. Xie, M. Jin, and C. Liu. (2010). Perturbation-based

User-Input-Validation Testing of Web Applications. J. Syst.

Softw., 83(112263–2274).

[68] Z. Djuric. (2013). A Black-box Testing Tool for Detecting

SQL Injection Vulnerabilities. Informatics and Applications

(ICIA), 2013 Second International Conference on, 216-221.

