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Abstract—In this paper, we have presented a new hybrid 

optimization method called hybrid Electro-Search algorithm 

(Eo) and Flower Pollination Optimization Algorithm (FPA) 

which introduces Eo to FPA. EO-FPA combines the merits of 

both Eo and FPA by designing on the local-search strategy 

from Eo and global-search strategy from FPA. The results of 

the experiments performed with twenty-two well-known 

benchmark functions show that the proposed algorithm 

possesses outstanding performance in statistical merit as 

compared to the original and variant FPA. It is proven that the 

EO-FPA algorithm requires better formulation to achieve 

efficiency and high performance to work out with global 

optimization problems. 

 

Keywords—Hybrid, Flower Pollination Algorithm, Electron 

Orbit Algorithm, Global Optimization 

 

I. INTRODUCTION  

 

Global optimization such as the function optimization 

and engineering optimization, are very significant in the 

real-world. It can be defined as a set of candidate solution 

within specific set bound dimension. Each solution has 

same fitness or objective function. The task is to search the 

candidate solution with maximum or minimum fitness value 

assumed as optimum in global [7]. For the more complex 

problem, the solution contains several level optimums of 

fitness which are called local optimum. In general, the 

capability to get the global minimum rapidly and able to 

avoid the local minima are the properties for a good global 

optimization algorithm. Recently, nature-inspired based 

search algorithms have become the trend in engineering and 

industry due to their excellent achievement in searching 

good solutions for complex problems, especially in the 

global optimization problems. Imitating the nature’s 

phenomenon, nature-inspired based stochastic algorithms 

are considered as random search but guided heuristically to 

the future iteration. Usually, the guide mimics the specific 

natural behavior [1] that occurs in various fields such as in 

biology, physic, and evolution.  
There are several researchers who have proposed nature-

inspired based search algorithms, such as Flower Pollination 

Algorithm (FPA) [2], Simulated Tornado Optimization [3], 

Levy Flight [5], Electro-Search Algorithm (Eo) [4] and 

Electromagnetic Field Optimization [6] for global 

optimization problem. 
 

II. LITERATURE REVIEW 

 

Despite the reported successful application of searching 

algorithm in literature, theorem of no free lunch (NFL) has 

created suspicion in advance with the fact that there is no 

perfect heuristic algorithm to solve all optimization 

problems [21]. 

Therefore, among the well-known strategies taken to 

obtain a more robust optimization technique and to 

recompense insufficiencies of the individual algorithm, 

combining various algorithms [20] could work effectively. 
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FPA and Eo could be categorized as emerging algorithms of 

the decade that have potential to be explored more. FPA has 

received much attention due to the convenience in its 

implementation with simple design and has fewer control 

parameters. The first implementation of FPA is to solve a 

number of practical optimization problems [2]. Furthermore, 

several hybrids of FPA have been proposed including the 

CSA algorithm [9], bee pollinator [22], time-varying fuzzy 

selection mechanism [25], an elite opposition strategy [23], 

partitioning search mechanism [24] and pattern search [26]. 

Meanwhile, Electro-Search algorithm (Eo), developed 

by Tabari and Ahmada, is a physics-inspired based heuristic 

for search optimization [4]. The advantage of Eo emerges 

when it allows the global search to have the ability to 

execute self-tuning parameters.  

The previously mentioned advantages contribute in the 

idea of initiating the hybrid between FPA and Eo as to 

improve the optimization and propose the hybrid algorithm 

as a new stochastic algorithm. 

Literature has shown that both algorithms have good 

performance in the implementation of some widely-used 

benchmark functions. Despite the strong global exploration 

ability of these algorithms to escape from local optima at the 

same time, the convergence speed is very slow in obtaining 

the global optimum. Hence, the hybrid EO-FPA could be a 

good method to deal with continuous global optimization 

problems with a good architecture.  

Thus, this paper discusses the combination of FPA and 

Eo to investigate the capability of Eo in enhancing FPA. 

Furthermore, EO-FPA algorithm is validated by searching 

the optimum parameters in twenty-two well-known 

benchmark functions that could solve continuous global 

optimization problems. The formulated algorithm is then 

compared with the standard FPA and a Modified Flower 

Pollination Algorithm (MFA) [9]. 

Following this section, this paper reviews the main 

characteristics of the FPA in the next section; and continues 

with the explanation on the Eo. The process of hybridizing 

the two algorithms to produce a new modified version of the 

FPA is then elaborated in Section III. The results of the 

proposed algorithm that was evaluated using a set of well-

known benchmark functions are detailed next in Section IV, 

along with the discussion and some ideas for possible 

enhancement of the proposed algorithm. Finally, the 

conclusion of this paper can be found in the last section. 

 

A.  Flower Pollination Algorithm 

 

FPA mimics the process of biotic and abiotic of flower 

pollination in real life proposed by Yang [2]. The 

advantages of the process include; simple to implement, has 

a small number of parameters, and high efficiency [8].  

 

 

 

 

1) Flower Pollination Process  

 

Flower pollination is a plant breeding mechanism that 

involves the spread of pollen by various distributing agents 

called pollinator, such as animals, insects, winds, and so on. 

There is significant relationship between flower and 

pollinator which has influence on the sustainability of plant 

species in its habitat [10]. 

The pollination process can be classified into two types 

which are abiotic and biotic. Abiotic pollination needs less 

or no pollinator and resulting in the close distribution area, 

which called self-pollination. For example, the pollen will 

be distributed by itself when flower from higher level 

becomes matured and throwing the pollen to flower at the 

lower level. Meanwhile, the biotic pollination, which is also 

known as cross-pollination is usually affected by pollinator 

behavior and the pollen would have more long-distance 

radius compared to through abiotic pollination. The 

pollinators such as birds and insect have their own foraging 

patterns such as the Levy flight [5]. 

In certain situations, the pollinator could visit different 

plant species and distribute pollen to other plant species. 

The fertilization process that would take place is a special 

behavior called flower constancy [9]. This process promises 

maximum reproduction of the species. With regards to the 

species reproduction, researcher assumed that the ratios 

involving biotic and abiotic process in flower pollination are 

around 9:1 [11]. 

Adaptation from the characteristics of the pollination 

process, pollinator behavior and flower constancy where 

FPA was formulated are as in the following rules: 

 

(Rule 1): The abiotic can be recognized as a local 

pollination process within close area.  

(Rule 2): The biotic can be represented as a combination 

of a global pollination process and pollinators behavior 

would follow the Levy distribution. It could involve long 

distance pollen distribution.  

(Rule 3): The flower constancy property can be 

interpreted as a reproduction similarity ratio between two 

flowers   

(Rule 4): Affected from environment such as wind and 

physical proximity, local pollination has dominant control 

than global pollination. 

 

2) Flower Pollination for Search Algorithm 

 

Therefore, the concept of flower pollination process as 

mentioned previously can be mathematically formulated as 

follows: 

For (Rule 1): 

   (1) 

where, x is a solution vector (pollen) at iteration t, γ 

represents the step size scaling factor, L is the pollination 

strength or the step size. Assuming the pollinator movement 
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follows the Levy flight, L is derived from the Levy 

distribution. g* is the best-found solution at iteration t.  

 

For (Rule 2): 

  (2) 

Same with Eq (1) where x represents the solution vectors 

and ɛ is derived from a uniform distribution between range 

[0, 1]. 

For formulation (Rule 4), the selection of pollination 

type either local or global can be controlled by a switch 

probability P. Usually, the local is dominated by global on 

pollination process. Based on these formulations, the FPA is 

developed as shown in Fig. 1. 

 

 
Fig. 1. Flowchart of Flower Pollination Algorithm [2] 

 

B. The Electro-Search Algorithm  

 

This algorithm is a combination of two physic behaviors, 

which are the orbital movement of the electrons around the 

atomic nucleus and discharge moving nucleus from position. 

Therefore the algorithm guides the heuristic searching into 

optimum solution. 

 

1) Atom Structure and Behavior 

 

In physics, atom is the smallest unit of material. The 

atom structure consists of a nucleus with several electrons 

circling around it. When observing more deeply, a nucleus 

is composed of several protons and neutrons which form 

99.94% of the atomic mass. Neutrons do not have electric 

charge, while the electric charge for electron is negative and 

positive for proton. If the number of protons and electrons 

in the atom is equal, the atom’s electric charge will be 

neutral. On the other hand, if it’s number of protons and 

electrons are different, the atom will be charged with either 

negative or positive. The second condition is called ion. The 

atom’s elements have specific reaction. Neutrons and 

protons are attracted to each other by the nuclear force. This 

reaction is stronger than the electromagnetic force reaction 

between protons and electrons. The number of protons in 

each nucleus is known as Atomic number which basically 

describes an element. The isotopes of an element are then 

the atoms with the equal number of protons and different 

number of neutrons. The electrons determine the magnetic 

properties of an atom [4].  

Bohr’s atomic model illustrates the nucleus that consists 

of neutrons and protons which is represented as the orbital 

center of the protons movement, which is similar to the 

movement of planets around the orbits of the sun. This 

model which is integrated with quantum mechanics feature 

represents the constrain of the multiple levels of orbits and 

the radius for particle energy in atom. There are two types 

of electrons’ movements between different levels of orbits, 

which are by absorbing, or also called excitation; or 

emitting, which also known as de-excitation of the energy 

[4]. 

 

2) The Electro-Search for Search Algorithm 

 

Adapting from the analogies of the atom element, 

limited multilevel orbit and movement type, a set of rules 

was formulated as below.  

 

(Rule 1): Molecular space which consists of various 

atom can be interpreted as the problem space of candidate 

solution. 

(Rule 2): Atom can be analogous as a candidate 

solutions.  

(Rule 3): The electrons orbiting the nucleus of each 

atom at multilevel orbit represented as search process within 

close area. 

(Rule 4): Atomic excitation and de-excitation can be 

interpreted as short or long distant search atom from current 

position. 

 

Therefore, the concept of orbiting electron around atom 

process as previously mentioned can be mathematically 

formulated as follows: 

 

For (Rule 3): 

 (3) 

n ∈ {2, 3, 4, 5} 

rand ∈ [0, 1] 
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where Ni represents the present position of the nucleus, n 

is the energy level that defines the orbit in which the 

electrons can move, rand is random numbers between the 

range [0,1], and r is the orbital radius determined by Eq. (4) 

except for the first iteration which is defined randomly.  

 

For (Rule 4): 

 

    (4) 

where Nnew represents the new position nucleus, Ack is 

the accelerator coefficient and Dk is determined by Eq. (5) 

 

  (5) 

 

where at each iteration k, ebest represents the best 

electron around the nucleus, Nk is the current position of the 

nucleus 

Nbest is the current best nucleus position and Rek is the 

Rydberg’s energy constant. Based on the formulation, Eo is 

developed as shown in Fig. 2. 

 

 
 

Fig. 2. Flowchart of Electro Search Algorithm [4] 

III. MODIFIED FPA (EO-FPA) 

 

There is still the need to fill the gap although the 

performance of original FPA are excellent for many 

applications [9]. Based on the complex problems being 

tested, FPA has been modified from many aspects to 

enhance its performance such as on its operator behavior 

[10], domain discretization [13], distribution value and 

exploration ability[14]. 

Among the issues debated is the FPA exploration ability 

conducted by Lévy flights that can be the reason of the 

aggressively generated large steps searching. Regarding this 

issue, the probability for the new solution produced at out 

the range of the problem space could increase, while the 

original exploration ability from Lévy flights model could 

decrease [9].  

Thus, the aforementioned reason is the leading idea in 

this paper as to propose the modification of FPA with EOA. 

At this stage of research, the movement of electrons around 

multilevel orbit nucleus have been formulated to take over 

the standard biotic during local pollination. This situation 

implies that the proposed hybrid Eo-FPA still utilizes the 

Lévy flights searching as the global search and orbiting 

electron as the local search. The candidate solutions are 

represented by the nucleus transition using Lévy distribution 

and driven by proton as the exploitation agent at the local. 

Based on the formulation, The Eo-FPA is developed as 

shown in Fig. 3. 

 

 
 

Fig. 3. Flowchart of a Hybrid Electro Search Algorithm and 

Flower Pollination 
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IV. EXPERIMENTS AND RESULT ANALYSIS 

 

A. Test Functions and Initialization Setting  

 

Experiment in this paper used a set of twenty-two widely 

benchmark functions given in CEC 2011 competition [17] 

listed in Table I with specific range boundary performance to 

evaluate the proposed algorithm. This set of experiment 

involved several types of solution space problems such as 

many local minima, bowl-shaped, plate-shaped, valley-

shaped, steep ridges/drops and other. Besides that, EO-FPA 

algorithm has also been compared to the original FPA and 

MFPA to search for global optimum at the given benchmark 

functions. 

Two types of statistical analysis have been used which 

are simple parameters and non-parametric statistical. The 

reason of using these statistical tools is because the simple 

statistical parameters only provide information about the 

algorithm’s behavior in solving that particular problem. On 

the other side, the non-parametric statistical has statistically 

provided better result on the comparison between several 

algorithms solving a numerical optimization problem. 

 
TABLE I.  THE BENCHMARK TEST FUNCTIONS USED IN 

EXPERIMENT 

 

Function Name 

Boundary Parameter 

Lower Upper  
Dimensi

on 

F1 Ackley -15 30 2 

F2 Cross-in-Tray  -10 10 2 

F3 Drop-Wave  -5.12 5.12 2 

F4 Eggholder  -512 512 2 

F5 Griewank -600 600 2 

F6 Holder Table -10 10 2 

F7 Levy  -10 10 2 

F8 Rastrigin  -5.12 5.12 2 

F9 Schaffer N.2 -100 100 2 

F10 Schaffer N.4 -100 100 2 

F11 Schwefel  -500 500 2 

F12 Shubert -5.12 5.12 2 

F13 Sphere  -5.12 5.12 2 

F14 Matyas -10 10 2 

F15 Zakharov  -5 10 2 

F16 Dixon-Price  -10 10 2 

F17 Rosenbrock -5 10 3 

F18 De Jong N.5 -65.536 65.536 2 

F19 Easom  -100 100 2 

F20 Michalewicz 0 pi 2 

F21 Beale -4.5 4.5 2 

F22 
Rotated 

HyperEllipsoid  
-65.536 65.536 2 

 

Table II lists out the detailed parameter setting of the 

FPA, MFPA and Eo-FPA algorithms used in experiment. 

The experiment was accomplished in the same hardware 

(Lenovo U41, Core i5, 2.20 GHz, 8GB RAM) and software 

Matlab2017b platform. The following result was obtained 

after applying and implementing our methodology in section 

three that is, our proposed work. 

 
TABLE II.  THE BENCHMARK TEST FUNCTIONS USED IN 

EXPERIMENT 

 

 
Parameter Setting 

Symbol value 

Alghorit

hm 

number of 

iterations  
1500 

number of 

execute 
30 

FPA  

n 50 

P 0.8 

γ 0. 01 

λ 1.5 

 MFPA  

n 50 

P 0.8 

γ 1  1 

γ2 3 

λ 1. 5 

cloning array 
[9, 8, 7, 6, 5, 4, 3, 

 2, 1, 1, 1, 1, 1, 1] 

Eo-FPA 

n 50 

P 0.8 

γ 0. 01 

λ 1. 5 

Orbit level [2, 3, 4..25] 

 
TABLE III.  STATISTICS OF OPTIMAL OBJECTIVE VALUES FOR 

THE 22 TEST FUNCTIONS 

 

Alg Min Max Std #Opt 

f1:Ackley    

Eo-FPA  6.66E-05 0.007885 0.00210114 0 

MFPA 8.88E-16 8.88E-16 0.00210114 0 

FPA 8.88E-16 8.88E-16 0 0 

f2:Cross-in-Tray    
Eo-FPA -2.06261 -2.06261 5.60E-09 0 

MFPA -2.06261 -2.06261 5.60E-09 0 

FPA -2.06261 -2.06261 4.68E-16 0 

f3:Drop-Wave    
Eo-FPA -0.999998 -0.99984 5.26E-05 0 

MFPA -1 -1 5.26E-05 10 

FPA -1 -1 0 6 

f4:Eggholder    
Eo-FPA -959.64 -958.168 0.552602 0 

MFPA -959.641 -959.641 0.552602 0 

FPA -959.641 -959.641 0 0 

f5:Griewank    
Eo-FPA 0.00833868 0.390791 0.124393 0 

MFPA 0 0 0.124393 10 

FPA 1.57E-11 5.83E-07 0 0 

f6:Holder Table    
Eo-FPA -19.2085 -19.2079 0.00022422 0 

MFPA -19.2085 -19.2085 0.00022422 0 

FPA -19.2085 -19.2085 3.74E-15 0 
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f7:Levy    
Eo-FPA 2.95E-10 1.25E-06 3.83E-07 0 

MFPA 1.50E-32 1.50E-32 3.83E-07 0 

FPA 1.50E-32 1.50E-32 0 0 

f8:Rastrigin    
Eo-FPA 2.85E-06 0.000483 0.0001447 0 

MFPA 0 0 0.0001447 10 

FPA 0 0 0 10 

f9:Schaffer N.2    
Eo-FPA 7.24E-11 1.57E-08 5.66E-09 0 

MFPA 0 0 5.66E-09 10 

FPA 0 0 0 10 

f10:Schaffer N.4    
Eo-FPA 0.500091 0.500092 5.90E-08 0 

MFPA 0.500091 0.500091 5.90E-08 0 

FPA 0.500091 0.500091 3.16E-08 0 

f11:Schwefel    
Eo-FPA 2.55E-05 2.65E-05 3.91E-07 0 

MFPA 2.55E-05 2.55E-05 3.91E-07 0 

FPA 2.55E-05 2.55E-05 0 0 

f12:Shubert    
Eo-FPA -186.731 -186.73 0.0001367 0 

MFPA -186.731 -186.731 0.0001367 0 

FPA -186.731 -186.731 0 0 

f13:Sphere    
Eo-FPA 1.02E-08 9.68E-06 2.94E-06 0 

MFPA 1.02E-58 2.76E-49 2.94E-06 0 

FPA 3.03E-57 5.25E-46 8.72E-50 0 

f14:Matyas    
Eo-FPA 6.08E-11 1.44E-07 5.20E-08 0 

MFPA 5.39E-58 1.24E-51 5.20E-08 0 

FPA 3.22E-56 1.61E-47 3.87E-52 0 

f15:Zakharov    
Eo-FPA 3.99E-10 4.31E-06 1.38E-06 0 

MFPA 3.06E-56 2.15E-49 1.38E-06 0 

FPA 1.24E-53 4.63E-44 6.72E-50 0 

f16:Dixon-Price    
Eo-FPA 0.000529692 0.058641 0.0239145 0 

MFPA 3.70E-32 3.70E-32 0.0239145 0 

FPA 6.12E-20 8.17E-14 0 0 

f17:Rosenbrock    
Eo-FPA 1.67E-07 1.94E-05 6.64E-06 0 

MFPA 0 4.93E-32 6.64E-06 9 

FPA 9.77E-14 5.23E-06 1.56E-32 0 

f18:De Jong N.5    
Eo-FPA 0.998004 0.998004 2.17E-11 0 

MFPA 0.998004 0.998004 2.17E-11 0 

FPA 0.998004 0.998004 1.81E-16 0 

f19:Easom    
Eo-FPA -1 -0.99999 3.62E-06 0 

MFPA -1 -1 3.62E-06 10 

FPA -1 -1 0 10 

f20:Michalewicz    
Eo-FPA -1.80064 -1.21657 0.181997 0 

MFPA -1.79991 -1.24761 0.189141 0 

FPA -1.8013 -1.8013 0 0 

f21:Beale    
Eo-FPA 0.0017779 0.099658 0.0300325 0 

MFPA 0 0 0.0300325 10 

FPA 0 0 0 10 

f22:Rotated Hyper Ellipsoid   
Eo-FPA 1.94E-07 6.55E-06 2.02E-06 0 

MFPA 7.77E-54 2.02E-47 2.02E-06 0 

FPA 5.40E-54 5.96E-42 7.32E-48 0 

 
TABLE IV.  AVERAGE ERROR FOR THE 22 TEST FUNCTIONS 

 

Function Eo-FPA MFPA FPA 

F1 0.0026366 8.88E-16 8.88E-16 

F2 2.06261 2.06261 2.06261 

F3 0.999954 1 1 

F4 959.262 959.641 959.641 

F5 0.110591 1 1.02E-07 

F6 19.2083 19.2085 19.2085 

F7 2.93E-07 1.50E-32 1.50E-32 

F8 7.95E-05 1 1 

F9 4.28E-09 1 1 

F10 0.500091 0.500091 0.500091 

F11 2.59E-05 2.55E-05 2.55E-05 

F12 186.731 186.731 186.731 

F13 1.48E-06 2.77E-50 6.22E-47 

F14 5.86E-08 1.76E-52 1.93E-48 

F15 1.18E-06 2.61E-50 5.59E-45 

F16 0.0201559 3.70E-32 9.09E-15 

F17 4.21E-06 4.93E-33 5.67E-07 

F18 0.998004 0.998004 0.998004 

F19 0.999997 1 1 

F20 1.7047 1.71324 1.8013 

F21 0.022064 1 1 

F22 2.38E-06 3.46E-48 6.10E-43 

 

B. Results and Discussions 

 

The experimental results were evaluated with statistical 

analysis performance which were minimum, maximum, 

mean and standard deviation value of the optimized function 

and successful rate for searching global optimum values. 

The statistics of performance for the twenty-two test 

functions are listed as in Table III, while Table IV presents 

the average value from each set experiment. Throughout the 

paper, the same result is formatted in italic and the best 

results are in bold. 

Instead of twenty-two functions that had been tested to 

achieve global minimum, the Eo-FPA succeeded in leading 

on only one function compared to other algorithms. 

Meanwhile, the other eight functions shared the equal 

performance, and missed out on the others. 

Results from all functions tested to see the maximum 

value on produced solution show that Eo-FPA shared the 

performance at six test functions and overcame all others. 

These results have influenced the test of average for the 

produced solution that resulting in the same pattern 

performance.  

In the experimental framework, nonparametric statistical 

procedures [15] were performed to compare the results of 

Eo-FPA. The pairwise comparisons composing the Sign 
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Test [19] and Wilcoxon Ranks Test [18]. Sign Test result as 

shows in Table V, Eo-FPA, Eo-FPA shows a significant 

improvement over FPA but not for MFPA. 

 
TABLE V.  SIGN TEST RESULT 

 

Eo-FPA   MFPA FPA 

Wins (+) 9 10 

Loses (−) 9 8 

Differences 0 2 

 
TABLE VI.  WILCOXON RANKS TEST RESULTS 

 

Comparison R+ R− p-value 

Eo-FPA vs MFPA 53 118 0.888 

Eo-FPA vs FPA 66 105 0.6727 

 

Table VI shows the R+, R−, and p-values computed for 

all pairwise comparisons concerning Eo-FPA (the p-values 

have been computed by using SPSS). Let R+ be the sum of 

ranks for the problems in which the first algorithm 

outperformed the second, and R− for the sum of ranks for 

the opposite value. As stated in the table, Eo-FPA shows 

none significant improvement over MFPA, and FPA, with a 

level of significance α = 0.5. 

 

V. CONCLUSION  

 

Hybrid nature-inspired algorithms provide a practical 

solution for global optimization problems. The natural 

behavior of electron that orbiting its nucleus and natural 

flower pollination process inspires Eo and FPA for 

optimization searching. Due to both algorithms’ advantages, 

these algorithms could be hybridized to produce algorithms 

with better performance. The hybrid optimization search 

algorithm Eo-FPA for global optimization problems has 

been proposed. 

The experimental process was centralizing on solving 

twenty-two benchmark functions on Eo-FPA, and comparing 

the results to the original FPA and MFPA algorithms. The 

results which are based on simple statistic indicate that Eo-

FPA could find optimal or close-to-optimal solutions. 

Meanwhile, the nonparametric sign test shows that the 

proposed algorithm could compete the original FPA and 

generate competitive result with MFPA. However, through 

Wilcoxon ranks test, non-significant difference result were 

recorded for both FPA and MFPA respectively. For overall 

result, it can be concluded that the proposed Eo-FPA could 

still be improvised on its mathematical formulation.  

Although the generated solution observed has similar 

pattern with MFPA, the solution value is low, therefore leads 

to a gap to achieve optimum value in precision value test 

function.  Future study should consider overcoming this –

issue since it has significant influence on the overall Eo-FPA 

performance. 
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