
International Journal of Innovative Computing 9(2) 9-21

9

Hybrid Method on Clickjacking Detection and

Prevention in Modern Advertisements

Kirit Shashank Dhurandhar, Maheyzah Md Siraj

School of Computing, Faculty of Engineering

Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

Email: dhurandharkirit@yahoo.in, maheyzah@utm.my

Submitted: 9/07/2019. Revised edition: 29/09/2019. Accepted: 1/10/2019. Published online: 28/11/2019

DOI: https://doi.org/10.11113/ijic.v9n2.231

Abstract—In modern advertisements, clickjacking attacks can be

delivered through a vulnerability in web application. To

overcome this, web application security is required that will

prevent malvertisement. In this study, prevention of clickjacking

in the modern web advertisements are implemented.

Vulnerability checks on the potentially malicious website were

conducted. Implementation of hybrid prevention method of

clickjacking into new developed website were carried out. Among

top 500 websites, 50 websites were chosen as a dataset in this

study out of which 4 case studies were selected. Website with

server privileges were required to implement the hybrid

prevention method, consisting opacity, Z-Index and X-Frame

option policy. A new website was developed to satisfy the

requirements for the method implementation. The results show,

among 50 selected websites, about 19 websites were vulnerable to

clickjacking. When the hybrid prevention method were

implemented in the developed website, it increases the security by

mitigating the vulnerability of web application to clickjacking

attack.

Keywords—Clickjacking, Detection, Prevention, Cyber Security,

Opacity, Z-index, X-Frame option

I. INTRODUCTION

When people talk about advertisements, it is thought of it as

a way organizations and business owners use to sell more

product and to popularize it by sharing them on the largest

platform in the world which is the internet. Malvertiesing is a

malware that use programmatic advertisement exchanges and

deploy the malicious content. In other word, the advertisement

is tricking programmatic exchanges into thinking that they are

legitimate instead of a traditional publisher reviewing an

advertisement and place it directly onto the web page. Later,

they use this exchange to redirect the user without their

knowledge.

Clickjacking attack was introduced by Robert Hansen and

Jeremiah Grossman in 2008, to steal user-initiated mouse

clicks to perform actions that the user is not interested in [1].

Clickjacking in simple terms is hijacking user’s clicks by using

transparent or opaque layers by ticking them into clicking on a

button or a link. It can also redirect the user to another page by

not letting the user click on the uppermost page as wished.

Clickjacking was called as “UI redress attack” is a where an

attacker makes several invisible layers that confuses the client.

When they are redirected to another page, the page is mostly

managed by third party application, domain or both. The

attacker achieves the goal by smartly setting a trap at a

clickable region on a web page e.g. the region where the login

button on the web page is located and the user is asked to enter

his or her username and password. On clicking, malicious web

page loads from the website inside an iframe, which makes use

of Cascading Style Sheets (CSS) to make the targeted region

transparent. In this region, different flavors of Clickjacking are

used to trick the user like deploying fake cursor, transparent

buttons, et cetera. The region might also be overlapped by

another element on the website. Technically, both the

JavaScript and CSS are used to place the iframe under the

mouse cursor to make the user click in the targeted region

resulting in a malicious action the attacker is intended to do.

The vulnerability can occur in all the browsers to embed the

code or a script of Clickjacking, which executes without the

user’s knowledge. Clickjacking attack can cause several threats

like stealing personal data such as bank account information,

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

10

credit card information and social security numbers or

installing software applications on a computer.

There are many researches that have implemented their

respective techniques in clickjacking prevention using different

scripts and tools. The concept of Same-origin policy is

discussed to create a better prevention compared to the

limitation of previous research. Several clickjack mitigation

techniques have been implemented and applied for browser,

but they all have weaknesses. Internet being the biggest

platform to show advertisements, attackers are getting

successful in satisfying their malicious behaviors by finding

vulnerability and exploiting it so gain private information from

users which are mostly unaware of such happenings. In several

scenarios, people might be unaware as to why the ads are

popping up, what makes users redirect to a new website, or

possible solution that must stop these advertisements from

displaying. Recent researches had been deployed to address the

issue of clickjacking exploit through prevention and detection

techniques and in fact most of these anti-clickjacking

techniques depend on numerous web application vulnerability

which are fixable. However, clickjacking is still a threat to

most users on the internet by the means for social networking

or online movie streaming or unlicensed software providing

websites. Therefore, these research focus on malicious

websites to detect and prevent malicious clickjacking or

redirects by making a hybrid prevention method.

II. LITERATURE SURVEY

In paper [2] they have devised new clickjacking attack

variants, which bypass existing defenses and cause more harm

than previously known, such as compromising webcams, user

data, and web surfing anonymity. To defend against

clickjacking in a fundamental way, they have proposed

InContext, a web browser or OS mechanism to ensure that a

user’s action on a sensitive UI element is in context, having

visual integrity and temporal integrity. The concept of context

integrity is introduced and is used to define and characterize

clickjacking attacks and their root causes. They have designed,

implemented, and evaluated InContext, a set of techniques to

maintain context integrity and defeat clickjacking.

The authors in [3] have proposed attacks based on

Likejacking and Cursor spoofing. They mostly affect the users

who are very sensitive about their personal information. The

attacks may also be modified to steal the user credential in

form of username. For example, Zscaler Likejacking

Prevention, detects hidden Facebook widgets and warns users

about Likejacking. Where, it tries to confirm the password,

pictures, and any private information that has more value for

the users.

The proposed attacks are launched into two different

scenarios such as Use of CAPTCHA and Use of Interest. The

proposed attack is a type of human authentication scheme in

which the users were asked to follow a certain pattern to allow

the user to access the actual website. This paper [3] has

proposed defense by creating Google Chrome extension to

prevent user against Likejacking and Cursor Spoofing attacks.

Google Chrome was selected because it has just two extensions

for the prevention of Clickjacking attack which adds a confirm

dialog to every Facebook Like button in order to prevent

Clickjacking. The proposed defense covers the functionality of

both the existing extensions and ensures the pointer integrity.

Hence the name given to it is Cursor Spoofing and

Clickjacking Prevention (CSCP). CSCP has the functionality

of detecting and preventing Clickjacking attacks on the

Facebook. When the pointer clicks on like or follows button, a

pop-up appears to the user that is clicked. When a cursor

spoofing is detected on the websites, it displays both the fake

and real cursors and warns the user that the website is

compromised.

Completely hidden: The actual clickjacking attack

consists of loading a victim piece of content into a 1x1 iframe

which affects the end-user by preventing them by not able to

see the victim content. The attacker then aligns the 1x1 iframe

at the center under the cursor so that the end-user clicks it.

Thus, the end-user cannot make a difference between the 1x1

iframe beneath the mouse pointer, people can be tricked easily

in clicking on such content.

Transparent overlay: In this scenario the attacker may

work on making the trusted windows transparent. The attacker

will then use this to overlay the trusted window over something

that the user wishes to click. This will cause the end-user to

trust that they are clicking on the content aligned beneath the

legitimate window. This scenario would register the click by

the transparent window since it is aligned over the content at

the time the click was made.

Rapid content replacement: Like ‘Content overlay’ attack,

this variation lets an attacker to try and obscure the content

over the click where the user wishes to click. The attacker

waits for the end-user to click, as soon as the user is believed to

click, the attacker rapidly takes away the content that is

obscuring the victim dialogue box. Formerly the end-user

clicks on the victim dialogue box, the attacker puts the content

overlay to obscure the dialogue. The process hardly takes more

than few milliseconds. This gives the attacker the freedom to

ask the user to perform a double-click. The click takes away

the malicious overlay and the next click would be passed to the

legitimate dialogue beneath. The whole scenario explains how

the attacker uses this technique to bypass the screen scraping

security by making sure the dialogue box is completely visible

when the user wishes to click. The cycle of this technique only

makes the dialogue visible till the time the click has been

registered and again hidden back to gain.

Content overlays: The most common way to exploit

clickjacking involves obscuring a legitimate and trusted

dialogue by overlaying malicious scripts or contents. There are

many variants to this attack.

Why Clickjacking Exists?

There could be a several reasons which depends upon the

type of attack to the vulnerability of a web page. This particular

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

11

attack gradually evolves which makes it easy to prevent in a

website that can be insecure to clickjacking assault. There are

many detection and mitigation methods overall. They range

from prevention method both client side to the detection

method server side.

Most clickjacking works when the affected user is already

logged in a particular webpage similar to socializing networks.

The victim is then tricked by attacker into performing

unwished process on a legitimate site. Social networking sites

are engineered to scatter data, info or links quickly such as

viral media and clickjacking uses this platform to spread the

attack.

How Clickjacking Works?

The affected website loads something called as iFrame in

its target website. The attacker makes sure the alignment of the

target website is accurately positioned in the affected website.

[4-6]. Mouse movement is also followed using Javascript. [5,

7]. Mouse movement is also followed using JavaScript as

shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 [7].

Fig. 1. Sample code frame

Fig. 2. Sample code clickjacking

Fig. 3. Inner.html

Fig. 4. Clickjacking.html

Fig. 5. Example of layers

Fig. 1 is an example of clickjacking using series of iframes

with absolute positioning. It shows the source code for

inner.html which puts the target page in an iFrame shown in

Fig. 3. While, Fig. 2 shows the source code for

clikjakcing.html where it puts inner.html into an iFrame that

means the target page is now inside the two levels of iFrames.

It will be resulted in the clickjacking.html showing the Join

Now button instead of the entire page, shown in Fig. 4 The

layers after the website that is put in an iFrame can be seen in

Fig. 5.

Malvertisement

An advertisement which includes malicious content or used

to download malicious software on a user’s computer is known

as malvertisement (malicious advertisement). It can be used to

attack the user’s computer with malicious software. Blue Coat

systems Inc which is a well-known network security company

says that malvertising is the latest way to hijack a computer.

This technique is preferred choice for organized crime.

Affected devices can be used to create stronger botnets that

may be made to use as identity theft, corporate espionage etc.

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

12

III. METHODOLOGY

This tool informs clickjacking vulnerability from the

website. X-Frame-Option is used for server-side

implementation that can intercept and analyze requests coming

through browser from response page (received from remote

web servers).The advantages from such proxy level analysis.

First, advanced types of clickjacking attackers mostly rely on

sophisticated JavaScript code. If it can analyze the structure of

JavaScript code for potential malicious activities (e.g.,

clobbering object, defining event handler), then attacks can be

identified early. Second, the approach does not depend on the

enabling or disabling of JavaScript code at the client side.

Third, clickjacking attacks due to stripping special HTTP

headers (X-Frame-Options) by other proxy servers can be

addressed easily. Finally, advanced attack techniques can be

detected without breaking legacy websites, and with less

performance overhead. Fig. 6 shows the flow of the research in

prevention of clickjacking.

When a response page is received, it should be checked for

prevention which will performs several checks to identify the

symptoms of a clickjacking attack in the page. Fig. 6 also

shows the flowchart of detecting attacks based on three

modules: Transparent Iframe, Z - Index, and HTTP header

policy [8].

Manual detection for vulnerability was conducted on

websites using online tools such as Appsec and Geek Flare.

Appsec is a tool used to test if a website is farmable in an

iframe of a different website. If the websites is frameable, it

will loads in Appsec iframe demonstrating vulnerability to

clickjacking. If the website fails to load in Appsec iframe, there

is a possibility of clickjacking prevention implemented on that

website. To further analyze if the website contains any

clickjacking prevention implemented, Geek Flare tool is used.

Geek Flare is a tool to read a websites header information that

displays the presence of X-Frame option policy. If the website

is equipped with an X-Frame option policy, then the website is

not vulnerable to clickjacking. In contrast, if the X-Frame

option is absent, the website is vulnerable to clickjacking attack.

Thus, requires implementation of clickjacking prevention

technique. Further testing can be carried out using testing

methods mentioned below to find hidden iframes that are

potentially malicious and could lead to a clickjacking attack.

Fig. 6. Research framework

Prevention of clickjacking using a hybrid of opacity, Z-

Index, X-Frame option (same origin policy) techniques and

uses a web-based tool to detect vulnerability of potential

webpage to get the required data for the prevention.

Transparent Iframes are proven to be the most effective way to

make a user click on a link or button or frame without their

intention. By changing the background colour of the

background and font colour, it will make any transparent

Iframes visible (if there are any). This will further let us inspect

the source code to check if there are any element which have

its background color and font color transparent. If that is the

case, then the technique mentioned can be used to make

transparent Iframes visible and the user can see the malicious

website loaded in that Iframe which can help prevent

accidental or unintentional clicks by the user.

Z-index basically defines which layer of the webpage is

closer to the human eye. First, user would shortlist all elements

which have position attribute not set as static as z-index is not

defined for such elements. Then it will filter out elements

closest to users’ eye, i.e. having max z-index. If these filtered

elements are found to have transparent background colour and

font colour, then it will make them visible.

From Fig. 7, it shows a website with X-Frame-Option set to

same-origin which states that this website could not be loaded

in an Iframe of another website if the origin of that website is

Start

Prepare dataset from50

potentially vulnerable

websites

Vulnerability check

Geek Flare online tool

Vulnerability

detected

Yes

No

APPSEC online tool

Yes

No

Website safe from

clickjacking attack

Prevention method

implementation

Opacity Z-Index Same-

origin

Hybrid method implemented

in the newly developed

website

End

Analysis

and

Detection

Prevention

Techniques

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

13

different, hence preventing a clickjacking attack occurrence.

This method is used to compare the websites and test them for

clickjacking vulnerability. Manual checking of the websites

will be conducted as a proof of concept to demonstrate the

effectiveness of Same-origin policy.

Fig. 7. Z-Index [9]

Fig. 8. Example policy X-Frame-Option (Same-origin)

From Fig. 8, it shows a header option that can be read using

browser developer settings. For this example, a new website

was created for the testing of the effectiveness of this method.

As you may see in the figure above, the developer option can

read the header configurations of a website and shows an X-

Frame option set to same-origin. This is the option that is

discussed and one of the methods used to prevent clickjacking

vulnerability.

IV. DESIGN AND IMPLEMENTATION

In previous section, it was discussed that a set of websites

to test for potential vulnerability for clickjacking from The

Moz top 500 website. They provide websites that are among

top 500 sites in the world as seen in Fig. 10, which will provide

legitimate websites for further testing for clickjacking

vulnerability.

Fig. 10. Website interface

The Moz lists top 500 websites in the world based on

domain activity and google ranking. They sort the list of

websites by their rank, root domain, linking root domain and

domain authority which shows the website legitimacy and

provide domains that are active. These websites benefit this

research by providing legitimate websites for testing possible

vulnerability for clickjacking.

Vulnerability testing were primarily done using two online

tools which play an important role. As it provides crucial data

for demonstrating vulnerability of websites by reading

information from websites. Which gives this research a

backbone by providing a concept of this study. Tool for adding

a website into an iframe is called Appsec. While, tool for

reading HTTP header information on the websites is known as

Geek Flare.

A. Appsec

Clickjacking which is also known as UI redressing which

manipulates an iframe to load a legitimate website on a

malicious or attackers’ website as shown in Fig. 11. This tool

loads a potential website to its iframe by proving the concept of

this study. Appsec website provides a simple tool where a

potential vulnerable website link can be pasted on its website to

test the vulnerability to clickjacking.

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

14

Fig. 11. Appsec interface. Image is blurred to protect the identity of

the website

To test the vulnerability of a website to clickjacking attack

could be proven when the websites is loaded in Appsec iframe.

Which is primarily how clickjacking is carried out by an

attacker. If the website is successfully loaded in Appsec iframe,

it provides this study a clear proof that the given website is

vulnerable to clickjacking. If the website does not load in

Appsec iframe, this demonstrates that the website is not

vulnerable to clickjacking and no further testing or

implementation can be conducted on the study.

B. Geek Flare

Geek-Flare is a Netspark web application security scanner

which is the only scanner that delivers automatic verification of

vulnerabilities. Proof-Based scanning. Websites that are proven

to have a vulnerability of clickjacking are further verified if

there are any HTTP header option such as X-Frame option

present in the website header as shown in Fig. 12. 100% of the

times if X-frame option policy is not present in the website

header, it is vulnerable to clickjacking.

Fig. 12. X-Frame information

Geek-Flare also gives a score to the websites for vulnerability

to clickjacking as shown in Fig. 13. Where, ‘A’ is the highest

score and ‘C’ being the lowest score. Websites that scores an

‘A’ in Geek-Flare is considered as not vulnerable to

clickjacking attack or UI redressing attack. However, websites

that are scored a ‘C’ are considered to be vulnerable to

clickjacking attack. The tool scores on the webpage works by

analysing if the website header option present the X-Frame. If

the tool reads the webpage header and couldn’t find the X-

Frame option, it scores the page with ‘C’. On the other hand, if

the tools read the X-Frame option present in the webpage. It

scores it with ‘A’ which also means the webpage is secured

from a possible clickjacking attack. The X-Frame option is a

policy that prevents a website from getting clickjacked by not

allowing it to load in other iframe depending on the policy

configuration of the website.

The results obtained from the vulnerability identification

using this tool will require further investigation to implement

the prevention method. This method can be used to prevent

such attacks in modern advertisements by making such

websites mitigate a possible clickjacking attack entirely.

Fig. 13. Vulnerability testing. Image is blurred to protect the identity

of the website

There are two existing techniques used in preventing

clickjacking such as opaque transparent iframe and Z-Index

check as discussed in previous chapters. However, this

technique was not very effective for modern day malicious

advertisements which rely on clickjacking vulnerability. They

hijacked user’s clicks and redirected them to a malicious

website.

When the attacker manipulates transparent iframes to hide

in the websites interface by reducing the opacity level, this

prevention technique can be applied to make the transparent

iframes more visible to the user’s eye and preventing the user

to perform clickjack which will redirect them to a malicious

website. The opacity levels of the hidden iframe implemented

by the attacker is shown in Fig. 14.

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

15

Fig. 14. Opacity level set by the attacker

In Fig. 14, it shows the attacker’s line of code that can be

overridden and making it visible to the user’s eye. Further

investigation can be carried out on the source code, by

detecting the element background and the font colour.

Z-index basically defines which layer of the webpage is

closer to the human eye. First, it will shortlist all the elements

which have position attribute that is not set as static as z-index

and not defined for such elements. Then it will filter out

elements which closest to the user’s eye, in which having

maximum z-index. If these filtered elements are found to have

transparent background color and font colour, an alert will be

generated as shown in Fig. 15.

Fig. 15. Z-Index check implementation

This prevention implementation sets the Z-Index of a

website to the uppermost layer and eliminates the iframe from

appearing above a website which in return will alerts the user

to avoid any unintentional clicks and can theoretically prevent

a clickjacking attack. Z-index only takes effect if the position

of the element are set explicitly. By setting it to be fixed,

absolute, or relative.

X-Frame option is a HTTP response header that can be

used to indicate whether the browser should be allowed to

render a page in a frame or an iframe. When it implemented on

any websites, it could avoid clickjacking attacks by making

sure that their content is not embedded into another sites. By

using the x-frame-options directive to protect sensitive anti-

cross-site request forgery pages, web developers can

immediately help mitigate the web application attacks. If the

X-FRAME-OPTIONS value contains the token ‘DENY’

browser will prevent the page from rendering since it can be

contained within an iframe. If the value contains the token

‘SAMEORIGIN’, the browser will block rendering only if the

origin of the top level-browsing-context is different than the

origin of the content containing the x-frame-options directive.

For instance, if http://mailmeplease.com/clickjacking.html

contains a DENY directive, that page will not render in a

subframe, no matter where the parent frame is located. In

contrast, if the x-frame-options directive contains the

SAMEORIGIN token, the page may be framed by any page

from the exact http://mailmeplease.com origin.

For this research, windows server 2016 was implemented

for server-side operation. Internet information service (IIS)

manager holds the windows server sites that have been

deployed by the user. X-Frame-Option must be configured in

the http response header tab as highlighted in Fig. 16. Once in

the tab, the user could implement X-Frame option to prevent

clickjacking attack.

Fig. 16. Windows server Implementation

V. RESULTS AND DISCUSSION

Several case studies are selected based on the popularity

worldwide websites which potentially contains malicious

advertisements. Each case study will be analyzed using the

online tools such as Appsec and Geek Flare and discussed in

previous chapter. Results from the vulnerability check will be

presented in each section below.

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

16

Vulnerability Check

A. Case Study 1: Website A

This website was selected from dataset created using The

Moz Top 500 website. It was ranked as number 1 out of the

500 websites listed in Moz.com. website A is known for the

blog publishing service that allow any user to post time-

stamped entries. It is globally used and developed since 1999,

which was later bought by Google. The domain for website A

can be owned by the user and direct the domain to Google

servers. Since users can have their own domain, the chances of

clickjacking vulnerability are high. By conducting the

vulnerability check on the website using Appsec, the results are

shown in Fig. 17.

Fig. 17. Appsec results. Image is blurred to protect the identity of the

website

Figure 17 shows the results obtained by pasting the website

link on the Appsec interface. It shows website A refused to

connect which means the website is not frameable on the

Appsec iframe. The result might indicate the website A have

implemented clickjacking prevention. Further investigation

carried out in Geek Flare web tool as shown in Fig. 18.

Fig. 18. Geek Flare scoring result. Image is blurred to protect the

identity of the website

Geek Flare scores website A with a ‘C’, which indicates the

websites is prone to clickjacking vulnerability. This tool gives

the score by reading the HTTP header information of website

A, it shows no presence of clickjacking prevention

implemented in the website. Details of the analysis of the

websites HTTP header information is shown in Fig. 19.

Fig. 19. HTTP header information

The HTTP header information shown in Fig. 19 indicates

the absence of X-Frame option policy on website A. This

suspects that website A relies on old frame busting technique

which gives a false positive result which confuses the

vulnerability testing process. However, this website is probably

still vulnerable to clickjacking attack if an attacker exploits this

vulnerability.

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

17

B. Case Study 2: Website B

This online movie streaming website is chosen due to its

popularity in providing latest movies worldwide. The users

frequently visit this site for free and latest movies since it has

multiple streaming servers for uninterrupted entertainment.

Due to its high traffic of visitors, making it a good opportunity

for the attacker to carry out successful exploit of clickjacking

vulnerability. By running the vulnerability check on website B

using Appsec, the result is shown in Fig. 20

Fig. 20. Appsec result. Image is blurred to protect the identity of
the website

In Fig. 20, the result indicates that website B is vulnerable

to clickjacking. Appsec analyses the website by framing it on

its iframe to detect possible vulnerability. Since website B

loads in Appsec iframe, which indicates the website can be

exploited by the attacker. Attacker uses these vulnerable

websites to spread malicious advertisements to redirect users to

malicious website. No Further testing needs to be conducted

using Geek Flare, as the website shows clear indication of

vulnerability to clickjacking.

C. Case Study 3: Website C

This higher educational institution website was chosen to

spread awareness among students and security experts about

the vulnerability to clickjacking. This website is a good

example for demonstrating clickjacking vulnerability since the

attacker can frame this website into another malicious iframe to

make the malicious website look legitimate website. Users

could be exposed to such malicious website to give away their

credential information to the attacker without user ever

knowing about it. Analysis of website C was carried out using

Appsec web tool and the results can see seen in Fig. 21.

Fig. 21 Appsec result. Image is blurred to protect the identity of the

website

Figure 21 shows vulnerability check results indicating

website C indeed vulnerable to clickjacking attack. Geek Flare

analysis will not be required since Appsec web tool enough to

analyse the clickjacking vulnerability. HTTP header stores the

X-Frame option information if it was implemented to website

C.

D. Case Study 4: mailmeplease.com/clickjacking.html

New website was developed to support the implementation

of the prevention method using windows sever and a domain to

make the website live on the world wide web. The website was

created using simple html coding and was further prepared to

hosting using Microsoft Internet Information Services (IIS).

The website was hosted using mailmeplease.com domain.

Windows IIS was used so that the manager function can be

used to implement the prevention methods. The

mailmeplease.com/clickjacking.html will be analyzed using the

same tools and will undergo the same procedure for

vulnerability check as above. The results from Appsec are

shown in Fig. 22.

Fig. 22. Appsec result

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

18

In Fig. 22, mailmeplease.com/clickjacking.html is loaded in

Appsec webtools interface which indicates the possibility of

this website to be vulnerable to clickjacking. Appsec interface

loads a given website in an iframe only when no prevention

methods are implemented for clickjacking vulnerability. Since

this is a testing website, further testing is conducted on Geek

Flare to demonstrate and later compare the before and after

implementation of X-Frame- option policy. Fig. 22 shows the

analyzed results by Geek Flare interface.

Fig. 23 Geeek Flare scoring result

Figure 23 shows score result of mailmeplease.com

/clickjacking.html before the prevention methods were

implemented the score shows ‘C’ which implies that the

website is vulnerable to clickjacking attack. The HTTP header

information is shown in Fig. 24.

.

Fig. 24. HTTP header information

HTTP header information as seen in Fig. 24, shows no signs of

X-Frame option policy present in the websites configuration.

This analysis was carried out to give a clear example of the

websites X-Frame option policy and will benefit further

comparison of before and after implementation of prevention

methods.

Hybrid Implementation

A. Opacity and Z-Index Implementation Result

To overcome transparency of the hidden iframe

implemented by the attacker on the website, a line of code is

applied on the newly developed website by increasing the

opacity level from 0.0 to 0.1 Fig. 25. Z-Index also plays an

important role in hiding malicious iframe that are commonly

altered by the attacker. The website also demonstrates Z-Index

value to mimic a vulnerable website altered by an attacker.

Another set of code is implemented in the same developed

website to change the value of Z-index in such a way that the

website is displayed closest to the user’s eyes shown in Fig. 26.

Fig. 25. Opacity change result

Fig. 26. Z-Index change result

Fig. 25 shows the opacity level that have been changed on

the developed website. In the previous chapter a hidden iframe

was mimicked as an example to show how an attacker makes

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

19

the iframe transparent. In Fig. 27, the website response on the

prevention methods is demonstrated.

Fig. 27. Implementation result

Fig. 27 shows the result after the opacity and Z-Index

implementation using the line of code shown in Fig. 25 and 26.

The code is implemented in such a way that it works after the

mouse is hovered over the hidden iframe. When the mouse is

hovered the opacity of the hidden iframe is set to change and

make it visible during mouse hovering. While , the Z-Index

layers the legitimate website closest to the user eyes. This

prevention method could be used for protection user from

filling sensitive information such as bank details and website

credentials, online shopping and others.

B X-Frame Option Implementation Result

HTTP header stores the configuration of X-Frame option

implemented on a website. This information can be read using

the browser developer settings or in this case Geek Flare web

application security tool. When X-Frame option is

implemented on a website, it blocks the website from rendering

on the attacker’s website preventing clickjacking attack.

Server-side implementation was taken place to demonstrate the

working of X-Frame option on a website. Fig. 28 shows the

resulting change after implementation of X-frame option

Fig. 28. X-Frame option implementation result

Implementation of Same Origin in X-Frame option was

carried out in the windows IIS manager. The website which is

supposed to be applied this prevention method is selected and

configured according to the user’s preference. In this

demonstration the use of Same-Origin policy was conducted

since it lets a website load into iframe if the website has a same

origin. This website would not be rendered in any other

websites iframe , thus preventing a clickjacking attack. Since it

is a server-side configuration a website had to be developed to

support the prevention method in this study.

Once the X-Frame option was applied to the website’s

configuration, the testing for clickjacking vulnerability was

carried out to analyze if the implemented prevention methods

works or not. Fig. 29 shows the results from Appsec web tools

implying that the developed website failed to render on another

website, thus preventing clickjacking attack. In other words, an

attacker will not be able to exploit this website to hijack user

click for its malicious use anymore.

Fig. 29. Appsec result

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

20

Fig. 29 was achieved after configuring the web configuration

of the website in IIS server. X-Frame option was applied and

set to same-origin to demonstrate the effectiveness of proposed

prevention methods. Further investigation was conducted to

show if X-Frame option does indeed readable in HTTP header

information, hence Geek Flare tool was used to check the score

and read header information form the website. Fig. 30 shows

the results after implementing X-Frame option from Geek

Flare analysis of the developed website.

Fig. 30. Geek Flare results

This study also demands to read the HTTP header

information of the website developed to prevent clickjacking;

hence Fig. 30 satisfies those needs by using Geek Flare web

tool to show X-Frame option present in HTTP header

information.

Fig. 31. Geek Flare result for X-Frame information

In Fig. 31, the X-Frame option can be read to be set as same-

origin which concludes the prevention method and not further

study needs to be conducted on this website since it fulfils all

the required implementation and results to prevent a potential

clickjacking attack to this website.

Discussion

There are many ways to prevent clickjacking on the internet,

which varies depending on the studies. The prevention method

provided by other studies may or may not work depends on the

attacks. The methods for preventing clickjacking mentioned in

this paper more relied on the X-Frame option more than the

opacity and Z-Index. As the attacker may use the easiest way to

attack users as many as possible, free movie streaming

websites are a major threat for clickjacking since their revenue

are depends on the advertisements shown in an iframe on the

movie streaming websites. Iframe will displays advertisement

and the attacker will take advantages and use it to spread

malicious attacks to the users by exploiting the websites

iframes and framing the malicious websites.

There are certain tools provided in Google chrome browser

extension, which is an automated application to prevent the

clickjacking vulnerability on websites through browser

extension. After downloading and running this app in the

browser extension, no security was prided by this apps for

clickjacking vulnerability. This made this study to focus on

manual implementation for this vulnerability, since the

automated application are unstable and tend to stop working if

when a proper design testing and implementation were not

carried out by the developer. The X-Frame option automated

application was under testing phase and was developed

completely few months back. Since it is a new application, they

only support some features provided by the X-Frame option.

VI. CONCLUSION

With an increase in the usage of the internet, protection

against Clickjacking will become a necessity in coming days to

protect users from malicious attackers. Many solutions came

and became obsolete with time. However, while designing the

prevention methods for this study extra caution were taken to

make it more robust and providing a solution which will be

easy to apply manually. This system will check for any

anomalies pertaining to Clickjacking attacks present in web

pages. Since it is a server-side implementation, developers may

have to apply it manually to the websites they want to protect

from clickjacking attack.

Several prevention methods for clickjacking have been

implemented in the study, such as Opacity, Z-Index, X-Frame

option. Each of these methods have their own limitations,

which can be overcome by combining these 3 methods

implemented to a website. Several websites were tested for

vulnerability check and few of those were selected as case

study in previous chapter. The results of vulnerability check

from Appsec and Geek Flare are shown and discussed. New

Kirit Shashank Dhurandhar & Maheyzah Md Siraj / IJIC Vol. 9:2(2019) 9-21

21

website was developed to implement the hybrid prevention

methods proposed by this study.

The prevention methods are server-side implementation

which will contribute to the information security developers

and less toward the clients or users. The results obtained after

implementing the prevention methods to developed website

concludes that by combining the 3 prevention methods, the

prevention for clickjacking is successfully implemented.

REFERENCES

[1] Hansen, R. and J. Grossman. (2008). Clickjacking. Available

from: http://www.sectheory.com/clickjacking.htm.

[2] Huang, L.-S., et al. (2012). Clickjacking: Attacks and

Defenses. USENIX Security Symposium.

[3] Rehman, U. U., et al. (2013). On Detection and Prevention of

Clickjacking Attack for Osns. Frontiers of Information

Technology (FIT), 2013 11th International Conference on.

IEEE.

[4] Callegati, F. and M. Ramilli. (2009). Frightened by Links.

IEEE Security & Privacy, 7(6).

[5] Niemietz, M. (2011). Ui Redressing: Attacks and

Countermeasures Revisited. CONFidence, 2011.

[6] Stone, P. (2010). Next Generation Clickjacking. BlackHat

Europe.

[7] Gall, M. (2010). Facebook/Flattr/… Clickjacking Examples

And How To Avoid It. Available from:

https://digitalbreed.com/2010/07/18/facebook-flattr-

clickjacking-and-how-to-avoid-it/.

[8] Ross, D. and T. Gondrom. (2012). HTTP Header X-Frame-

Options. Work in Progress.

[9] Bradley, S. (2009). Z-Index and the CSS Stack: Which

Element Displays First? Available from:

http://vanseodesign.com/css/css-stack-z-index/.

