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Abstract—Biomarkers are important in medical field for
classification of disease. Most of the research emphasis on finding
the suitable biomarkers from gene expression dataset. This
dataset has high-dimensionality properties that contribute to bias
of classifier and degrading classification performance. The usage
of embedded feature selection method such as ranked guided
iterative (RGI) had generated a better classification performance
in selecting of informative features. Nevertheless, the RGI does
not taken account the effect of feature redundancy. Therefore,
this research introduced an effective RGI with minimum
redundancy maximum relevance (mRMR) feature selection
method to eliminate the redundant features and preserve the
required features for ranking and classification purpose. The
selection process was carried out using gene expression datasets

which are prostate cancer (PS) and central nervous system (CNS).

The obtained classification accuracy results were compared with
the previous methods and the biological verification and
validation were done based on available knowledge databases.
The findings showed that this proposed feature selection method
had efficiently classified the features and the chosen genes were
associated with the diseases.
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1. INTRODUCTION

Biomarker is an indicator of biological state that commonly
discovered by researchers. Generally, the biomarker is
classified as a gene that exist differently throughout the sample
without redundancy [1]. Identification of potential biomarker is
crucial for assessing and detecting the type of diseases. The
micro-array data are widely used in identification of biomarker
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that includes of a high data dimensionality with thousands of
genes, but the sample sizes are often small. These
characteristics of datasets had limited the investigation of
biomarker, where high redundant genes tend to be noises
which may led to classifier bias and degrade the classification
outcome. [2]. Therefore, an excellent feature selection is
needed for eliminated the noises in order to reduce the amount
of data where only the important features can be extracted from
the total information content and identified the potential
biomarkers.

Until now, there are many research had been done to
identify biomarker using feature selection method. The feature
selection is the most important part to be consider for
measuring feature relevance in order to understand the data
characteristics, minimize computational requirement, and
enhance classifier’s performance. In micro-array data analysis,
the feature selection is used for selecting informative genes and
eliminate redundant features to facilitate the scientists to
determine the related gene expression with the respective
diseases [3]. Commonly, there are three main approaches in
feature selection which are wrapper, filter, and embedded
methods.

The filters are a computationally method that aim to
determine the correlation between the genes with the label
classes to evaluate the circumstances of suggested feature
subset. But, the filter approach unable to measure the accuracy
performance of chosen features due to it lacks interaction with
the classifier. Among of the filters approach that widely
applied in micro-array data analysis are ReliefF (RfF), Chi-
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Square (CS) Correlation-based Feature Selection (CFS), and
mRMR.

The mRMR is one of the typical filter approaches that able
to minimize the reciprocal redundancy of feature subset
through obtaining of reciprocal information’s between features
and classes. Other than that, the mRMR also choose the highly
relevance features with low redundancy to the classes [4].

Wrapper methods is a computationally practicable
embedded method that involves large computations number to
obtain the features [5]. Through this method the feature
selection and classifier are combine for developing a dual-
computational operation. [6]. One of advantage using this
method is it able to reduce the computational reclassifying time
of various subsets performed via classifier. Among of the
wrapper methods are Recursive feature elimination, support
vector machine (SVM), and RGI feature elimination.

The RGI feature elimination is classified as a latest
heuristic method that relies on iterative reduction step. Initially,
the feature reduction is applied to study the transcriptomic and
proteomic data via Bioinformatics oriented Hierarchical
Evolutionary Learning (BioHEL) [7]. Then, a new type of RGI
feature elimination was developed by using Random Forest
(RF) as a base classifier [8]. During iteration step, the features
are classified or ranked according to its priorities in machine
learning model. When eliminating the features from the dataset
by blocks, the RGI feature elimination excludes several
iterations of blind trial-and-error. In addition to being used as a
feature elimination, the RGI also uses the principle of soft tail
where the iteration is assumed as success if it faces a
performance degradation within a tolerance stage under
definite experimental conditions.

This approach are being adapted toward any kind of
classifier for ranking the features after the process of training.
The RGI feature elimination requires an efficient classifier to
examine small sets of potential biomarkers in order to produce
excellent performance. This is because it depend on
information obtained via the machine learning in order to
achieve maximum result for classification process [8]. The
principles of RGI feature elimination is based on the iterative
reduction process where the features are iteratively eliminate
from the original high-dimensional dataset. The drawback of
this approach is it highly depend on the ranking stage without
taken account the high redundant features which may
contribute to classifier bias. Therefore, it will limit the selection
of biomarker for detection of gene with optimum result.

In this current work, the RGI feature elimination with
mRMR filter selection method is introduced. The main reason
of mRMR filters is select because it provides the most
important features based on the correlation with the class label
and able to reduce the features redundancy. Thus, it is expected
that by using this approach the obtain features will have
maximum relevancy with minimum redundancy. Through this
approach, the limitation of RGI feature elimination can be
overcome.
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II. EXPERIMENTAL DESIGN

This section briefly described the flow of research in fulfill
the objective. In general, five important phases are involved as
state in the following discussion.

A. Preparation of Gene Expression Dataset

The Prostate-Sboner (PS-GSE16560) and Central Nervous
System (CNS-GPL80) datasets were used for classification
process. The PS-GSE16560 contains 281 of samples and 6145
of genes with 2 classes (165 of lethal and 116 of indolent) [9].
Meanwhile, the CNS-GPL80 consists 60 of samples and 7130
of genes with 2 classes (39 of medulloblastoma survivors and
21 of treatment failure) [10]. Both datasets were saved in Gene
Expression Omnibus (GEO) database and in comma-separated
value (csv) file for facilitate the filter to read the data.

B. Selection of Dataset Features

The Parallelize Ensemble mRMR Feature Selection
(mRMRe) package was applied in RGI based mRMR method.
This mRMRe packages were downloaded from internet source
using this link: https:/cran.r-project.org/package=mRMRe.
The mRMRe was executed for 30 times to obtain 30 features
subset. Each of the subset contained the first 100 features
obtained via mRMRe in the pattern of index arrangement,
where the value of ‘1’ represents the first feature/column
shown in previous micro-array dataset.

C. Selection of Optimal Solution using Voting Majority (VM)
method

The VM method was applied towards the previous 30
features after the mRMR filter selection process in order to
choose the most produced 100 features. This step is crucial for
obtaining the optimal solution of mRMR execution results and
it can be done using Microsoft Office Excel.

At this stage, the obtained results were categorized into a
matrix form, which are the row indicated the features index
location and the column indicated the features subset. The
dataset features were chosen through locating the most
obtained index location in each of matrix arrangement. During
the process, if there was an overlapping index location
occurred in the row of matrix, then the 2" most obtained index
location was chosen. This process was repeatedly conducted
until the overlapping of index position does not occur and the
most produced 100 unique index locations are chosen. Then,
the chosen index locations were utilized to determine the
features obtained through mRMRe in order to find the
corresponding feature index of the previous microarray data.

D. RGI Feature Elimination Process Flow
The source code of RGI feature elimination was got from

http://ico2s.org/software/rgife.html. At this stage, the obtain
features subset from voting majority method was used and
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stored in .arff file format via Weka tool before read by the RGI
feature elimination. Then, the features were ranked according
to it importance by the classifier. In this research, two types of
classifiers used which were RF and SVM classifier for
comparison purposed.

The bottom features in the form of block were iteratively
eliminated by RGI feature elimination to determine the
degraded features subsets. The block size of current features
data was set to the default of 0.25. The block features were
eliminated permanently if the current classification accuracy is
similar or higher than the earlier iteration or reference
performance. In this current research, the RGI feature
elimination was executed 10 run times to obtain various
optimal feature set model. The feature set models were loaded
into the RGI feature elimination policy to determine the RGI-
Minimum, RGI-Maximum, and RGI-Union, therefore, the final
model can be chosen. Generally, the RGI-Minimum is the last
minimum feature value of model, while RGI-Maximum
represents the last maximum feature of model, and RGI-Union
is the union feature value obtain through the total run of
execution. Fig. 1 and Fig. 2 summarize the flow of filter
selection for RGI-based method and RGI with mRMR based

method.

Original Dataset

Initial Feature Subset

Embedded method — -l ------- |
I

RGIFE

Feature Elimination |

Final Feature Subset

[Potential biomarker)

Fig. 1. Flow process of proposed method based on RGI feature elimination
with mRMR feature selection
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| Feature Elimination |

| Classifier |

Final Feature Subset

(Potential biomarker)

End

Fig. 2. Flow process of previous method based on RGI feature elimination [8]

E. Performance Measurement

The effectiveness of the proposed method in classifying the
features are measured based on classification performance
accuracy and Biological validation. The obtained performance
from current method was compared with the Lazzarini and
Bacardit, 2017 work [8]. The classification accuracy of
classifier was obtained from confusion matrix generated in
each RGI feature elimination run. Then, the performance was
justified through 4-fold cross validation method. This research
preferred to used 10-fold cross validation where the value of &
is 10. The £ = 10 was chosen based on the previous default
validation method [8]. The classification accuracy can be
obtained based on Eq. 1.

True +True (M
True +True +False +True

Accuracy of Classifier =

where, T* is the true positive, 7~ is the true negative, F* is the
false positive, and F~ is the false negative.

The final chosen attributes or gene subset were compared
with the existing works and disease databases to validate the
result in order to determine the biomarker identification.
Therefore, from the comparison the chosen attributes or genes
can be known either it correlated or not with the disease before
chose it as potential biomarker. The disease databased were



Wen Xin Ng & Weng Howe Chan/ IJIC Vol. 11 No. 1 (2021) 35-43

acquired from Comparative-Toxicogenomics Database and
Malacards-human disease database [11, 12].

III. PERFORMANCE OF FEATURE SELECTION METHOD

The findings of this work are discussed based on two main
categories which are based on accuracy of methods and
biological context verification of the chosen features as the
candidate biomarker for the identification of diseases.

A. Accuracy of Feature Selection Method

The accuracy of the RGI with mRMR method for PS-
GSE16560 dataset and CNS-GPL80 dataset in comparison
with existing method (RGI) [8] are shown in Table I and Table
I1, respectively.

TABLE I. CLASSIFICATION PERFORMANCE ACCURACY OF PS-GSE16560
DATASET USING RANDOM FOREST AND SUPPORT VECTOR MACHINE CLASSIFIER
WITH DIFFERENT FEATURE SELECTION METHODS

Classification Accuracy (%)
Classifier Random Forest Support Vector Machine
Policy RGI with RGI with
RGIBI | "mrmr | RGIBI | yrmr
RGI-Minimum 71.2 72.6 69.4 76.4
RGI-Maximum 72.7 72.9 71.6 76.8
RGI-Union 72.3 72.7 70.9 75.8

TABLE II. CLASSIFICATION PERFORMANCE ACCURACY OF CNS-GPL80
DATASET USING RANDOM FOREST AND SUPPORT VECTOR MACHINE
CLASSIFIER WITH DIFFERENT FEATURE SELECTION METHODS

Classification Accuracy (%)
Classifier Random Forest Support Vector Machine
Policy RGI with RGI with
RGI8] mRMR RGL8] mRMR
RGI-Minimum 589 82.1 42.1 95.0
RGI-Maximum 60.0 73.5 57.2 84.6
RGI-Union 61.7 75.7 56.5 93.2

According to Table I, the results showed that the
classification performance accuracy of RGI with mRMR
method outperformed the RGI method for all of the classifier
policies. The RGI with mRMR method showed higher
accuracy with percentage difference of about 0.7% for Random
Forest classifier and 5.68% for SVM classifier in comparison
to the RGI method for PS-GSE16560 dataset.

The possible reason in improvement of classification
accuracy of proposed method is due to the applied of mRMR
filter where better feature subset without redundant features
can be selected as the input for RGI feature selection. The
mRMR filter managed to remove the redundant features and
chose the important features that correlated with the diseases.
Thus, the improvement in classification of dataset accuracy has
contribute to better performance measurement. It has been
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found that through RGI with mRMR method, the RGI-
Maximum performed better than RGI-Minimum and RGI-
Union which are the accuracy for Random Forest Classifier
and SVM classifier were 72.9% and 76.8% in PS-GSE16560
dataset.

Furthermore, the policies result in Table II showed that the
classification accuracy of RGI with mRMR method
outperformed the RGI method for RF and SVM classifier. The
percentage increases of RF classifier was 16.9% and SVM
classifier was 39% for proposed method in comparison with
the RGI method in CNS-GPLS80 dataset. Similar reason as state
before where the presence of mRMR filter help to extract better
feature subset during classification process. The highest
percentage accuracy for RGI with mRMR method was found
from RGI-Minimum policy with 82.1% for RF classifier and
95.0% for SVM classifier in CNS-GPL80 dataset.

Besides, the finding of this proposed method also can be
used for comparison with other feature selection methods such
as ReliefF, Chi-Square, CFS and SVM. The main purpose of
this comparison is to discover the classification accuracy of
RGI with mRMR method with the others. The RGI-Union
policy is employed as the investigated parameter for
comparison purpose. Table III and Table IV summarize the
classification accuracy of RGI with mRMR method and other
types of feature selection methods in PS-GSE16560 and CNS-
GPL80. The highest classification accuracy of the methods is
shown in the bold values.

TABLE III. CLASSIFICATION ACCURACY OF RGI WITH MRMR METHOD AND
OTHER FEATURE SELECTION METHODS IN PS-GSE16560 DATASET

Accuracy of Classifier (%) (PS-
GSE16560)
Method Random Support Vector
Forest Machine
This study RGI with mRMR 72.7 75.8
(RGI-Union)
RGI 72.3 70.9
Lazzarini and (RGI-Union)
Bacardit CFS 74.1 71.2
(2017) [8] SVM-RFE 73.3 64.4
ReliefF 72.6 69.0
Chi-Square 71.6 70.5

TABLE IV. CLASSIFICATION ACCURACY OF RGI WITH MRMR METHOD AND
OTHER FEATURE SELECTION METHODS IN CNS-GPL80 DATASET

Accuracy of the Classifier (%)
(CNS-GPL380)
Method Random Support Vector
Forest Machine

This study RGI with mRMR 75.7 93.2
(RGI-Union)

RGI 61.7 56.5
Lazzarini (RGI-Union)

and Bacardit CFS 62.2 54.6

(2017) [8] SVM-RFE 66.8 69.9

ReliefF 68.1 53.5

Chi-Square 52.0 46.2

The classification accuracy of CFS and SVM-RFE method
higher than the RGI with mRMR method when using RF
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classifier (Table III). This happen because the random decision
tree was executed in the extracting process of feature subsets.
However, the RGI with mRMR method showed higher
accuracy than the other methods when the SVM classifier was
used.

Meanwhile, the Table V showed that the RGI with mRMR
method obtained the highest classification accuracy compared
to other methods for RF and SVM classifier. Therefore, it
indicates that the RGI with mRMR method produce excellent
classification of dataset features, which make it a suitable
candidate as biomarker for identification of diseases.

B. Biological Context Verification

Besides of determining classification accuracy of methods,
the biological verification also conducted in this research for
identifying the suitable biomarker linked with the diseases by
using extracted features in the RGI with mRMR method. The
features occurred of about 5 times and above across 10 RGI
feature elimination executes were used for verification. This
specification was used ensure the frequent occurred genes
obtained 50% and above of probability chance to be chosen by
RGI feature elimination for identifying suitable biomarker. Fig.
3 and 4 represent the Venn diagram of extracted final features
based on RGI with mRMR method in PS-GSE16560 and CNS-
GPLS8O0 datasets.

Selected GSE16560 Gene

Random Forest SVM

Fig. 3. Venn diagram for PS-GS16560 dataset of RGI with mRMR method

Selected GPL80 Gene

/-—'—

Random Forest

[

Fig. 4. Venn diagram for CNS-GP80 dataset of RGI with mRMR method

Both Fig. 3 and Fig. 4 indicate that the total number of final
extracted genes from RGI with mRMR method for PS-
GSE16560 dataset was 48 genes and 40 genes for CNS-GPL80
dataset. It can be seen that the SVM classifier extracted more
final genes compared to RF classifier for both datasets. This
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occur because the SVM has higher precision than the RF
classifier. It has been found that the percentage average of
precision value for PS-GSE16560 dataset was 77.7% for SVM
classifier and 71.2% for RF classifier across 10 RGI feature
elimination runs. Meanwhile, the percentage average of
precision value for CNS-GPL80 dataset was 94.4% for SVM
classifier and 77.2% for RF classifier across 10 RGI feature
elimination runs. Thus, it indicated that the SVM classifier
achieved better classification quality or relevant of features
compared to RF classifier.

The selected features in PS-GSE16560 and CNS-GPLS80
datasets were validated via existing works and diseases
databases to examine their potentiality as the potential
biomarker for disease context. As state earlier, the Comparative
Toxicogenomics Database and Malacards were used for
validation purpose. The Table V summarized the presence of
final chosen genes in PS-GSE16560 dataset associated with the
prostate cancer, whereas Table VI represented the existence of
final selected features in CNS-GPL80 dataset that associated
with the central nervous system in Malacards.

TABLE V. EXISTENCE OF FINAL CHOSEN FEATURES IN PS-GSE16560
DATASET ASSOCIATED WITH THE PROSTATE CANCER IN MALACARDS

Disease Type of Genes

Sushi repeat consisting of protein, X-linked-2
Integrin and beta-6

Inhibitor of growth family with member-3

Gprotein signalling modulator-2 (AGS3-like and C-
elegans)

Pyruvoyltetrahydropterin-6 synthase

CD-46 molecule and complement regulatory protein
RAB1A member of RAS oncogene family

Ataxia telangiectasia mutated includes of
complementation groups A, C, and D

Prostate Cancer

TABLE VI. EXISTENCE OF FINAL CHOSEN FEATURES IN CNS-GPL80
DATASET ASSOCIATED WITH THE CENTRAL NERVOUS SYSTEM IN MALACARDS

Disease Type of Genes
ADAM metallopeptidase domain-8
Regucalcin
Central N Olfactomedin-1
entral Nervous —
System Cystathionine-beta-synthase

Wingless-type MMTV integration site family and
member-5A
Monoamine oxidase-B

(Medullablastoma)

Discoidin domain receptor tyrosine kinase-2

According to Table V and VI, there are eight final chosen
features in PS-GSE16560 associated with the prostate cancer
and seven final chosen features in CNS-GPL80 associated with
central nervous system diseases in Malacards dataset. In
addition, the wvalidation approach was carried out in
Comparative Toxicogenomics Database for determining the
inference score of final extracted features based on RGI with
mRMR method with the respective diseases. The inference
score was determined in the form of log-transformed product
of the inference interconnection among the features and
diseases with the chemicals value that contribute the inference.
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The higher chemical value for making inference of feature-
disease relationship, the higher inference score can be obtained.
Thus, the greater interaction between the gene and disease is
determine.

Table VII and Table VIII summarize the highest
Comparative Toxigenomics Database inference score of top 20
final extracted genes in PS-GSE16560 and CNS-GPLS80
datasets with the related diseases. Referring to the databases
and other published works, the final extracted genes showed
potentiality to become biomarker for cancer-related disease

context. This current research had proposed improved RGI
feature elimination with mRMR filter selection method to
improve the classification accuracy of RGI feature elimination-
based method of previous study. Based on analysis, it shown
that the higher classification accuracy can be obtained from
this proposed method. The mRMR filter had successfully
filtered the initial relevant feature subset where the redundant
features were eliminated from the high dimensional microarray
dataset. Besides, it also improved the identification of final
genes as potential biomarker for diseases.

TABLE VII. SUMMARIZATION OF FINAL SELECTED GENES IN PS-GSE16560 WITH THE INFERENCE SCORE THAT RELATED TO PROSTATE CANCER

Type of Genes Highest Explanation Reference
Inference
Score
Matrin-3 43 Decomposed protein was presence in prostate cancer cells [13]
General transcription factor IIA of 2 and 43 Differently describe when cure using a lower dosage of cadmium in [14]
12kDa prostate epithelial cells
ARP 3 actin-related protein-3 homolog of 37 Less description when treating with Urolithin A in the prostate cancer cells [15]
yeast
NGFI-A binding protein-2 of EGR1 binding 36 Protein expression was commonly lost in most main prostate carcinoma [16]
protein-2 samples
SNW-1 domain 35 Ski-interact proteins react with the androgen receptor (a main mediator of [17]
prostate cancer pathogenesis)
Integrin-beta-6 35 Prostate cancer could occur via focal adhesion pathway [18]
Malic enzyme-1, NADP(+)-dependent, 34 Possibly a cytoplasmic component in prostate cancer [19]
cytosolic
6-pyruvoyltetrahydropterin synthase 34 Contrary describe during treating with dihydrotestoterone and [20]
bicalutamide in prostate cell lines
Inhibitor of growth family of member-3 32 Presence in serious prostate cancer [21]
Lysophosphatidylglycerol acyltransferase-1 31 Contrary describe in prostate cancer [22]
RABGTPase with activated protein-1 30 Possibly linked with the metastatic prostate cancer [23]
Acidic of leucine-rich nuclear 30 Contain of ING-3 that highly existed in serious prostate cancer [24]
phosphoprotein 32E
GM?2 ganglioside activator 30 Exist in KEGG pathway analysis for prostate cancer [25]
Cold inducible RNA binding protein 28 Regulated in the prostate cancer cells [26]
General transcription factor ITA 1-19/37kDa 27 Presence in the prostate cancer cell lines [27]
Nuclear factor of erythroid-derived 2-like-1 24 Suitable used as biomarker for prostate cancer [28]
Nuclear receptor subfamily 1-H-2 24 Regulated in the prostate cancer cells [29]
Solute carrier-39 of zinc transporter-14 23 Degrade of expression led to malignant phenotypes in prostate cancer [30]
Potassium channel K-3 21 Included in 5% under-expressed prostate cancer genes [31]
Protein inhibitor STAT-3 21 Responsible as a co-regulator in the androgen receptor (signal pathway for [32]
prostate cancer cells)

TABLE VIII. SUMMARIZATION OF FINAL SELECTED GENES

IN CNS-GPL80 WITH THE INFERENCE SCORE THAT RELATED TO MEDULLOBLASTOMA

Type of Genes Highest Explanation Reference
Inference
Score
Prostaglandin endoperoxide synthase-2 98 Commonly describe in medulloblastoma of group 3 [33]
(prostaglandin-G/H synthase and
cyclooxygenase)
Cytochrome-P450-2-E and polypeptide-1 59 Usually acted in tumorigenesis of medulloblastoma [34]
Monoamine oxidase-B 54 Commonly describe in human gliomas cells [35]
Gamma-aminobutyric acid (A-receptor with 46 Presence in miRNA pathway analysis for medulloblastoma [36]
alpha-1)
Soluble Phosphoenolpyruvate 32 Less express in AMP-activated protein kinase activation of [37]
carboxykinase-1 medulloblastoma
Nuclear respiratory with factor-1 29 Main in the development of human brain [38]
Mesenchyme homeobox-2 27 Regulated in human brain and central nervous system cancer meta-analysis [39]
Cystathionine beta synthase 25 Non-regulated result to distraction in central nervous system [40]
Fibroblast growth with factor-4 25 The activation resulted to variation in neural stem cells [41]
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Type of Genes Highest Explanation Reference
Inference
Score
Protein phosphatase-2 with regulatory 24 Presence in deoxyribonucleic acid damage response of glioblastoma cells [42]
subunit-B' and alpha
Potassium large conductance calcium M- 23 Presence at down-regulated of high grade gliomas [43]
alpha-1
Membrane protein with palmitoylated 1-55 23 Attack of autoimmune actions [44]
kDa
Fms related tyrosine kinase-1 22 Possibly related with the cellular positions in glioma cells [45]
Olfactomedin-1 22 Regulated in medulloblastoma cell lines [46]
K-lysine acetyltransferase-2B 20 Sub-group genes in medulloblastoma [47]
Protein tyrosine phosphatase of receptor 18.9 Presence in protein-protein interaction network related with gliomas [48]
type with f-polypeptide and interact protein-
liprin of alpha-1
Wingless MMTV-5A 18.7 Led to mobility in glioblastoma cells [49]
ADAMBS metallopeptidase 18.1 Commonly describe in medulloblastoma patients [50]
Discoidin domain receptor tyrosine kinase 2 17.8 Commonly testing for kinase PLK4 in medulloblastoma [51]
Non-coupling protein-1 17.5 Produce metabolic refuge to avoid tumourigenesis [52]

IV. CONCLUSION

The current research successfully developed and designed
RGI with mRMR feature selection method to produce excellent
biomarker properties for identifying the related diseases. The
mRMR filter is selected for removing the redundant features
and classifying the important feature subset. This method had
facilitated in exhibiting better feature subset that was applied in
the embedded method of RGI feature elimination for the
improvised feature ranking and elimination purpose. Therefore,
a better classification accuracy able to be obtained by the
classifiers in RGI feature elimination. This research had briefly
analyzed and discussed the verification and validation of
classification accuracy and biological analysis of proposed
method with the published works. The findings indicated that
the RGI with mRMR method obtained better classification
performance accuracy compared to other existing method.
Besides, the biological validation had been done to determine
the possibility of RGI with mRMR method become biomarker
identification of related disease based on literature studies and
disease databases. The results showed that most of the final
chosen genes by the proposed method was interconnected with
the associated disease. It interpreted that the proposed method
was promising and potentially able to be used as biomarker for
disease classification and disease detection in healthcare field.
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