
International Journal of Innovative Computing 11(1) 53-57

53

An Improved SQL Injection Attack Detection Model
Using Machine Learning Techniques

Yazeed Abdulmalik
School of Computing, Faculty of Engineering

Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Johor, Malaysia

Email: Yz.id@yahoo.com

Submitted: 1/3/2021. Revised edition: 6/4/2021. Accepted: 6/4/2021. Published online: 24/05/2021
DOI: https://doi.org/ 10.11113/ijic.v11n1.300

Abstract—SQL Injection Attack (SQLIA) is a common
cyberattack that target web application database. With the ever
increasing and varying techniques to exploit web application
SQLIA vulnerabilities, there is no a comprehensive method that
can solve this kind of attacks. Therefore, these various of attack
techniques required to establish many methods against in order
to mitigate its threats. However, most of these methods have not
yet been evaluated, where it is still just theories and require to
implement and measure its performance and set its limitation.
Moreover, most of the existing SQL injection countermeasures
either used syntax-based detection methods or a list of predefined
rules to detect the SQL injection, which is vulnerable in advance
and sophisticated type of attacks because attackers create new
ways to evade the detection utilizing their pre-knowledge.
Although semantic-based features can improve the detection, up
to our knowledge, no studies focused on extracting the semantic
features from SQL stamens. This paper, investigates a designed
model that can improve the efficacy of the SQL injection attack
detection using machine learning techniques by extracting the
semantic features that can effectively indicate the SQL injection
attack. Also, a tenfold approach will be used to evaluate and
validate the proposed detection model.

Keywords—Web application security, database security, SQL
injection attack

I. INTRODUCTION

SQL Injection Attack, known as SQLIA is one of the most
common vulnerabilities of web applications. Although SQL
Injection Attacks recently lost its first rank on the list of top 25
Most Dangerous Software Errors by the Common Weakness
Enumeration (CWE™), it is still the 6th rank on the list of
2020. So far, by using these SQL query vulnerabilities,

attackers can access the information on the database for many
purposes such as extract, alter or delete the data. Which may
cause to disrupt the system. Justin Clarke [1] described the
process of SQL Inject as a weakness in the code where the
program does not validate the inputs of user before passing
them to SQL queries, which makes the attacker can manipulate
the code to execute it on the back-end database.

Despite those obvious vulnerabilities on database, most of
the prevention of injection attack methods depending on the
database design phase and on the skills of the developer. So,
there is no comprehensive solution will prevent directly SQL
injection attacks. Steiner et al. [2] argued that withe the ever
amount of research about SQLIA, the only resulting that may
mitigate SQLIA is to code defensively. However, these
researches not only help the developers by providing effective
solutions to prevent the threats of SQLIA but also help them to
understand the different types of SQL Injection Attacks to
detect and avoid the vulnerabilities.

II. BACKGROUND OF THE PROBLEM

There are various types of SQL Injection Attacks, which
are, including but not a limitation to Tautologies,
Illegal/logically incorrect queries, Union query and Piggy-
backed queries. In this section, each type will be described.

A. SQL Injection Attack based on Tautology

The tautology injection attack is to bypass the
authentication and access to the database without a valid
username. Also, to identify injectable parameters which means,
discover an injection spot to SQL injection attack in the

Yazeed Abdulmalik / IJIC Vol. 11 No. 1 (2020) 53-57

54

database and extract the data. The following is the basic
command of the Tautologies injection attack:

SELECT ∗ FROM users WHERE id = 100 OR 1 = 1 ;

The above statement, will make the query is evaluated
TRUE since the 1=1 is always true, and return all the data of
the table (users), which means the attacker will bypass the user
authentication, access to the table and extract the data by using
this injection.

B. SQL Injection Attack based on Illegal/logically Incorrect
Queries

The intent of this kind of SQL attack is trying to discover
injectable parameters and extract data. Because of the ability
for identifying the structure of the database and its injectable
parameters, it is used in many attacks as the first step. Simply it
happens when the application server returns the default error
page which is contain information about the vulnerabilities that
help programmers to correct their applications and sometimes
return name of tables and column. So, attackers exploit this
information on error pages to target the database weather by
extract injectable code or data.

C. SQL Injection Attack-based UNION QUERY

SQL injection attack-based UNION QUERY is another
type of SQL attack that is used for bypassing authentication
and extracting data. In this type, attacker exploits the UNION
SELECT statement to inject his query after the correct query.
The result is, return both of correct and injected query results
from a database. Following is example of a Union Query
statement:

SELECT accounts FROM users WHERE login=’’ UNION

SELECT cardNo from CreditCards where

acctNo=10032 -- AND pass=’’ AND pin=

Assuming that there is no login equal to’’ and this is the fake
query that trick the application and continue to execute the
second query which is the data of the Credit Cards table, the
column "cardNo" of account "10032". [3].

D. SQL Injection Attack based on Piggy Backed Queries

The intent of this type is to extract data, add or modify data,
perform denial of service, execute remote commands. In this
type, attacker injects the malicious with the correct query that
may involve lNSERT, UPDATE and DELETE clause for
modifying a record. For example:

SELECT * FROM User_info WHERE UserName = n;

lNSERT

lNTO User_info VALUES ('Pknapit','123')

When just the table name is known, this statement will insert a
record into the table. Also DELETE, UPDTE clauses can be
executed by using the same above query. [4].

III. LITERATURE REVIEW

In this section, a review of three common techniques that
used for detecting SQL Injection Attack and related to our
model proposed has been presented. These detection
techniques are, Static Analysis, Dynamic Analysis and
combined both them.

A. Static Analysis

Static Analysis is an approach that is used to detect many
vulnerabilities not only SQL injection attacks. For SQL
injection attack, it analyses the SQL query statement on the
web application for detecting and preventing SQL Injection
attacks. There are numerous researches that had proposed
based on this approach. Wassermann and Su [5] have
proposed using the combined automated reasoning and static
analysis method in order to prevent SQLIA. The method
verifies that there is no tautology in the real-time SQL Query.
However, this method only detects the attack-based tautology
and cannot detect another type of injection attack. Another
method is proposed by Gould et al. [6] is the JDBC checker.
This method by using the Java String Analysis library is
verifying the inputs in real time to check if there SQL
Injection Attack and prevent it. Because of using the Java
Script Analysis library in this method, so it is only supported
Java. Kosuga et al. [7] proposed a technique that is named
SANIA based on static analysis. SANIA analyses the syntax
of SQL queries between web application and database to
detect where are the SQL injection vulnerable spots, then
generate automatically attacks based on this vulnerability and
compare the parse trees of SQL queries with the results of that
automated attack to validate the portability of attack. The
limitation of SANIA that is needed the developers to know the
all-SQL queries and HTTP requests on the web application.
Fu et al. [8] proposed a static analysis framework called
SAFELI for identifying SQLIA vulnerabilities at compile-time,
SAFELI can identify the vulnerabilities of the corresponding
user input that could lead to a breach of information security.
The limitation of this method that it is only detecting SQL
injection attack in Microsoft based product.

B. Dynamic Analysis

Dynamic Analysis is another approach used for detecting
SQL injection attacks, it detects the vulnerabilities during
program execution. Appelt et al. [9] proposed an automated
technique called µ4SQLi to detect SQL injection attack based
on dynamic analysis, the technique based on a set of mutation
operators that manipulate inputs to create new test inputs to
trigger SQL injection attacks. Which may generate inputs that
contain new attack patterns, and increasing the likelihood of

Yazeed Abdulmalik / IJIC Vol. 11 No. 1 (2020) 53-57

55

detecting vulnerabilities. Ciampa et al. [10] proposed an
approach and tool called “viper”. The approach matching
pattern the outputs and error messages, and use the
information to craft attack inputs that are more likely to be
successful at revealing vulnerabilities. In this method, error
messages of web application may lead to not be able to
prevent SQL injection attack. Shin [11] proposed the white-
box security testing framework that verifying and the inputs in
order to detect SQL injection attack. The main limitation in
dynamic analysis that the vulnerabilities of web application
can be located depending only on previous attacks.

C. Combined Analysis

Combined Static and Dynamic Analysis is the approach
that collects the advantages of both static and dynamic
approaches and using them together in order to detect and
prevent SQL injection attacks. Halfond and Orso [12]
proposed a technique called AMNESIA to detecting and
preventing SQL injection attacks based on static analysis and
dynamic analysis. The static analysis, creating a model of the
legitimate queries of the application, and the dynamic analysis
by using runtime monitoring check the dynamically-generated
queries and match them with the static model. However, some
a legitimate query that is like the structure of SQL attack may
lead to produce false negatives with this method. ASSIST is
another technique that is proposed by Mui and Frankl [13]
which using a combination of static analysis and program
transformation for automatic query sanitization and prevent
SQL injection in code. But this technique also as AMNESIA
result a false negative because of imprecision. Dharam and
Shiva [14] also proposed a Runtime Monitoring framework
that is monitoring the behavior of the application in the post-
deployment to detect and prevent SQL injection attack based
on Tautology. However, this method only detecting SQL
injection attack based on Tautology. Qing and He [15]
proposed a method that detect and prevent SQL injection
attacks using a model that is generated by using an analysis
technique to extract legitimate SQL queries and match it with
AOP. However, the main limitation of this method that the
source code of the program has to be visible.

Most of the existing SQL injection countermeasures either
used syntax-based detection methods or a list of predefined
rules to detect the SQL injection. Although such solutions can
be suitable for basic SQL injection attacks, they are vulnerable
to advance and sophisticated type attacks. This is because
attackers create new ways to evade the detection utilizing their
pre-knowledge about the conventional detection and
mitigation approaches are based on parsing the SQL syntax.
 Although semantic-based features can improve the
detection, up to our knowledge, no studies focused on
extracting the semantic-based features from SQL statements,
while useful patterns can be extracted using machine learning
techniques from the SQL queries traffic between the web
server and the application server. This research proposed a
model to enhance the performance of a hybrid analysis
method for detecting SQL injection attack by extracting the
semantic-based features using machine learning techniques.

IV. PROPOSEDMODEL

The proposed model construction for improving the
efficacy of detection SQL injection attack consists of three
phases, Dataset Phase, Static and Dynamic analysis Phase, and
Model Construction Phase. Dataset phase is the previous
proposed method which this study is focusing on improving
its performance by the proposed model construction. The
second phase is the static and dynamic analysis process. Then,
the third phase is the construct model. This section covers the
details of each phase of the proposed model.

Phase I: Dataset

This phase is the previous method for detection SQLIA
proposed by Ghafarian [16] which is combined between static
and dynamic analysis method. Firstly, it suggested to insert a
record at every table of the database that has only Symbols.
Table 1 shows an example for this proposed database design.

TABLE 1 Example of proposed design of Database table from [16]

ProductID ProductName Constructor
101 %$% %$%
102 Pen Stabilo
103 Pencil Steadtler
104 Eraser Artline

Also, it proposed an algorithm that implementing at the
business logic layer of the web application which is an
external program that will be applied in CGI interface for
monitoring all the input queries before passing the request to
the database.

The proposed algorithm:
“
{

Input_string = SQL Query ;

Output_string =Null;

Table_Name=get_table_name(Input_String);

Where_String=get_where_Query(Input_String);

Output string=”select *

from”+table_Name+”where”+where_string;

DataTable=Exec_Query(Output_string);

X=find(DataTable,”$%$”);

If(x==1) Return “Not Valid”;

Else Return “Valid”;

}

“

Phase II: Static & Dynamic Analysis

This phase is where the static and dynamic analysis take a
place at the database access layer. By using the result that

Yazeed Abdulmalik / IJIC Vol. 11 No. 1 (2020) 53-57

56

getting from the algorithm and match it with the database that
has the proposed design in phase I, so that will detect any
types of SQL injection attack.

Phase III: Model Construction

In this phase, the semantic features that were extracted
from the dynamic and static analysis will be combined and
used to construct a model using machine learning techniques.
Many algorithms will be tested such as the Random Forest
algorithm (RF), Artificial Neural Network (ANN), support
vector machine (SVM), and logistic regression (LR). The
dataset which contains two types of SQL queries namely the
benign and malicious SQL query will be used. A tenfold
approach will be used to evaluate and validate the proposed
detection model. Figure 1 shows the block diagram of the
proposed SQL detection model.

Fig.1. Model Construction of improve the efficacy of SQL injection attack
detection

V. PERFORMANCEMEASUREMENT PLAN

Measuring the method performance is based on two factors
that will take into consideration in evaluating the method and
defining its limitation which are Detection Overhead and Error
Rate. Following is discerption each factor:

1) Detection Overhead

Detection Overhead is the time that the method takes until
detecting SQL attack which is called Detection Overhead.

2) Error Rate

Measuring the error rate of SQL injection attack methods
is depending on two common issues which are, False-positive
and False-negative. False-positive is to define correct request
as SQL attack. False-negative is to define the SQL attack as a
normal request and could not detect it.

VI. EVALUATION AND IMPLEMENTATION PLAN

The evaluation and implementation plan are to create a
testbed that included insecure web applications which is
vulnerable to SQL injection attacks and databases, then
perform a list of SQLIA without using the model. After that,
re-perform the SQL injection attacks with the previous
proposed method and with the model construction. Finally, the
proposed model will be evaluated by reporting the results
based on the performance measurement that have mentioned

in the previous section which are, error rate and detection
overhead. Figure 2 shows the implementation plan flow.

Fig. 2. Flow of implementation and evaluation plan

VII. CONCLUSION

The aim of this research is to create a model that can
increase the accuracy of SQL injection attack detection using
machine learning techniques by extracting semantic features
that can effectively indicate the attack. The proposed model
consists of three phases which are Dataset, Static and Dynamic
Analysis, and Model Construction. The evaluation and
validation of the proposed model are in progress and the results
will be presented in the next publications.

REFERENCES

[1] Justin Clarke. (2012).What Is SQL Injection?
[2] S. Steiner, D. Conte de Leon, and J. Alves-Foss. (2017). A

Structured Analysis of SQL Injection Runtime Mitigation
Techniques. Proc. 50th Hawaii Int. Conf. Syst. Sci., 2887-2895.
Doi: 10.24251/hicss.2017.349.

[3] W. G. J. Halfond, J. Viegas, and A. Orso. (2008). A
Classification of SQL Injection Attacks and Countermeasures.
Prev. Sql Code Inject. By Comb. Static Runtime Anal., 53.

[4] P. Kumar and R. K. Pateriya. (2012). A Survey on SQL
Injection Attacks, Detection and Prevention Techniques. 2012
3rd Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2012.
Doi: 10.1109/ICCCNT.2012.6396096.

[5] G. Wassermann and Z. Su. (2004). An Analysis Framework for
Security in Web Applications. SAVCBS 2004 Specif. Verif.
Component-Based Syst., 70. [Online]. Available:
http://web.cs.ucdavis.edu/~su/publications/savcbs.pdf%0Ahttp:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.72.2255&
amp;rep=rep1&type=pdf#page=82.

[6] C. Gould, Z. Su, and P. Devanbu. (2004). JDBC Checker: A

Yazeed Abdulmalik / IJIC Vol. 11 No. 1 (2020) 53-57

57

Static Analysis Tool for SQL/JDBC Applications. Proc. - Int.
Conf. Softw. Eng., 26, 697-698. Doi:
10.1109/icse.2004.1317494.

[7] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y.
Takahama. (2007). Sania: Syntactic and Semantic Analysis for
Automated Testing Against SQL Injection. Proc. - Annu.
Comput. Secur. Appl. Conf. ACSAC, 107-116. Doi:
10.1109/ACSAC.2007.20.

[8] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.
(2007). A Static Analysis Framework for Detecting SQL
Injection Vulnerabilities. Proc. - Int. Comput. Softw. Appl.
Conf., 1(August), 87-94. Doi: 10.1109/COMPSAC.2007.43.

[9] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan.
(2014). Automated Testing for SQL Injection Vulnerabilities:
An Input Mutation Approach. 2014 Int. Symp. Softw. Test. Anal.
ISSTA 2014 - Proc., May, 259-269. Doi:
10.1145/2610384.2610403.

[10] A. Ciampa, C. A. Visaggio, and M. Di Penta. (2010). A
Heuristic-based Approach for Detecting SQL-injection
Vulnerabilities in Web Applications. Proc. - Int. Conf. Softw.

Eng., January, 43-49. Doi: 10.1145/1809100.1809107.
[11] Y. Shin. (2004). Improving the Identification of Actual Input

Manipulation Vulnerabilities, 1-4.
[12] W. G. J. Halfond and A. Orso. (2005). AMNESIA: Analysis

and Monitoring for Neutralizing SQL-injection Attacks. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2005, 174-183.
Doi: 10.1145/1101908.1101935.

[13] R. Mui and P. Frankl. (2010). Preventing SQL Injection
through Automatic Query Sanitization with ASSIST. Electron.
Proc. Theor. Comput. Sci., 35, 27-38. Doi: 10.4204/eptcs.35.3.

[14] R. Dharam and S. G. Shiva. (2012). Runtime Monitoring
Technique to handle Tautology based SQL Injection Attacks.
Int. J. Cyber-Security Digit. Forensics (IJCSDF), 1(3), 189-203,

[15] W. Qing and C. He. (2016). The Research of an AOP-based
Approach to the Detection and Defense of SQL Injection
Attack, 731-737. Doi: 10.2991/aest-16.2016.98.

[16] A. Ghafarian. (2018). A Hybrid Method for Detection and
Prevention of SQL Injection Attacks. Proc. Comput. Conf.
2017, 833-838. Doi: 10.1109/SAI.2017.8252192.

	I.INTRODUCTION
	II.BACKGROUND OF THE PROBLEM
	A.SQL Injection Attack based on Tautology
	B. SQL Injection Attack based on Illegal/logically I
	C. SQL Injection Attack-based UNION QUERY
	D. SQL Injection Attack based on Piggy Backed Querie

	III.LITERATURE REVIEW
	A.Static Analysis
	B.Dynamic Analysis
	C.Combined Analysis

	IV.PROPOSED MODEL
	Phase I: Dataset
	This phase is the previous method for detection SQ
	Phase II: Static & Dynamic Analysis
	Phase III: Model Construction

	V.PERFORMANCE MEASUREMENT PLAN
	1)Detection Overhead
	2)Error Rate

	VI.EVALUATION AND IMPLEMENTATION PLAN
	VII.CONCLUSION
	REFERENCES

