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Abstract—Advancements made in consumer and readily 

available RGB-D capturing devices have sparked researcher 

interest in 3D reconstruction, particularly in dynamic scenes, 

as well as the quality performance and its speed. The recent 

advancement in such devices supports the developments of 

various applications such as teleportation, gaming, volumetric 

video, and CG films. Real-time 3D reconstruction methods 

review in a dynamic scene of virtual environment is depicted in 

this paper. This provides an insight view on how real-time 3D 

reconstruction beneficial achievement further enables 

reconstruction systems to be managed in real-time technology 

such as virtual reality or augmented reality application.  
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I. INTRODUCTION  

 

In the grounds of computer graphics and also computer 

vision, real-time 3D reconstruction as a research topic has 

been one of the most increasingly interesting areas. 3D 

reconstruction is a process in which different aspects of the 

actual visual world, such as object geometry, motion of 

specific objects while the appearance and texture are 

observed in the scene, that later are reconstructed in the 

virtual environment [1]. The capacity to reconstruct any or 

parts of the real-world elements has opened up new 

possibilities in the computer graphics also computer vision 

grounds. Free-viewpoint video can be produced through 

geometry reconstruction, surface motion, as well as observed 

appearance while reconstructed kinematic motion is used to 

create photo realistic animation [2]. 

Rapid innovations in 3D reconstruction research [3, 4] 

have made it possible to reliably combine though the fusion 

method of depth maps from several RGB-D cameras to 

produce a 3D model of a static scene [5, 6, 7]. Conversely, 

owing to limitations such as the need for a carefully built 

capture environment [8, 9] involves high quality equipment 

and resolution as well as the numerous videos capturing 

equipment, the task of reconstructing non-rigid scenes is 

still essentially unsolved. Furthermore, the topic of non-

rigid deformation from one shape to another is ill-posed. 

The usage of single sensor to estimate non-rigid motion is a 

cumbersome, since more than half of the scene is obscured 

at any given moment, and because constant movement 

causes significant frame-to-frame variations, which may 

contribute to inconsistency in the scene's topological 

structures, hence increase the difficulty level to create 

reliable calculations [10]. Fortunately, though devices such 

as Kinect [11] and Bumblebee [12] have helped overcome 

acquisition constraints, reconstruction algorithms also need 

the prior scene to compel the space issue, such as pre-took 

lighting environments, template of pre-scanned model and 

intricately embedded skeletons [11]. In this paper we 

emphasis our review on static and moving camera to 

reconstruct the dynamic scene. We offer an overview of the 

various 3D reconstruction methods, with a focus on 

complex scenes with non-rigid structures, articulated action, 

or both. 
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II. PREVIOUS WORK 

 

The none other well-known previous research work in 

the 3D reconstruction uses the widely available commodity 

sensor (Kinect) that incorporates a structured light-based 

depth sensor. The KinectFusion research work [6] present a 

system employing only a moving low-cost depth camera 

and commodity graphics hardware, for a precise real-time 

mapping of complex and arbitrary indoor scenes in varying 

illumination conditions. The system uses a simultaneous 

localization and mapping (SLAM) system to track the 

environment and do the mapping in real-time. The process 

consists of (1) surface measurement, (2) surface 

reconstruction update, (3) surface prediction, and (4) sensor 

pose estimation. 

Then, the KinectFusion in [13] extends the system with 

a novel interactive reconstruction system where user can 

dynamically interact with the reconstructed environments 

through multi-touch interaction. The system able to 

reconstruct the environment while simultaneously 

segmenting and tracking foreground objects and the user 

making it possible to perform 3D reconstruction in a 

dynamically changing scene. 

Apart from working in a rigid dynamically changing 

scene, researcher has started to investigate the 

reconstruction of a non-rigid scene in real-time. Research 

work such as VolumeDeform [14], present a novel dynamic 

geometric shape for reconstruction using a single RGB-D 

sensor at real-time rates. The system does not require a 

template shape to work with the reconstruction as the scene 

model is build up from scratch during the scanning process. 

The volumetric representation parameterized the geometry 

and motion through a distance field of the surface geometry 

and non-rigid space deformation. 

In this paper, we focus on real-time 3D reconstruction 

method in a dynamic scene. There are several obligatory 

techniques for reconstructing a 3D dynamic scene due to the 

design of the camera and object. According to [2], the 

camera's and world's diverse essence can be divided into 

four classifications: (1) static camera static object, (2) static 

camera moving object, (3) moving camera static object, and 

(4) moving camera moving object as seen in Fig. 1. 

 

 
 

Fig.1. Dynamic scene classification 

 

 

Further down, the reconstruction in a dynamic scene 

consists of a rigid and non-rigid 3D reconstruction. A 

dynamic scene contains both static and dynamic objects. 

Static objects are those that do not deform, such as a table or 

a chair, and dynamic objects are those that do deform, such 

as human interaction and hand movements.  

 

III. REAL-TIME NON-RIGID 3D RECONSTRUCTION IN 

DYNAMIC SCENE 

 

In this paper, we focus on real-time non-rigid 3D 

reconstruction, which is divided into three sections: (1) 

general deformation, (2) articulated motion, and (3) human 

motion capture as illustrated in Fig. 2. Furthermore, these 

techniques are split further into three groups [2] that consists 

of: (1) 3D reconstruction of rigid objects, (2) 3D 

reconstruction of non-rigid objects, (3) 3D reconstruction of 

articulated motion of the object. 

 

 
Fig. 2. Non-rigid 3D reconstruction division [2] 

 

 

In the case of non-rigid forms, as seen in Fig. 3, Zollhöfer 

[15] proposes a proficient real-time reconstruction system 

that able to record a range of deformation of non-rigid 

shapes. 

 

 
Fig. 3. Non-rigid 3D reconstruction of human face [15 

 

 

The proposed method is intended for non-rigid 

reconstructions of single objects at near range. The method 

consists of two phases where first scanning the desired 

object while undergoing mostly rigid deformations by using 

volumetric fusion to automatically extract the triangle mesh. 
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In order to establish a multi-resolution hierarchy, the mesh 

is preprocessed before performing real-time non-rigid 

reconstruction, which results in a deformed mesh at each 

time stage, by performing the three steps at each frame: (1) 

rigid registration, (2) non-rigid surface fitting, and (3) detail 

integration. 

Further, the SobolevFusion [16] method focus on 

reconstruction of free non-rigid motion that is built on 

Sobolev gradient flow, which allows for a more simple, 

quicker energy computation while preserving geometric 

information without over-smoothing. The method manages 

the topological changes and broad motion, requiring just a 

few views to create a model with approximation voxel 

correspondences and color the reconstruction. Fig. 4 below 

shows the SobolevFusion method reconstruction example 

acquire from the RGB-D sensor. 

 
 

Fig. 4. SobolevFusion reconstruction example [16] 

 

 

IV. REAL-TIME NON-RIGID 3D RECONSTRUCTION METHODS 

 

Various natural visual world elements, such as intrinsic 

or observed presence, static geometry and detailed motion 

are captured and reproduced in dynamic scene reconstruction. 

A realistic reconstruction rendering for virtual reality 

scenario as in Holoportation [17] is a perfect example of 

realistic rendering where the geometry, motion as well as the 

appearance is reconstructing in real-time. The real-time 3D 

reconstruction method as in [1], for the non-rigid surface 

reconstruction in real-time, use dense shading details for a 

precise and robust surface registration. For casual motion 

reconstruction, their approach suggested a collection of 

temporally compatible geometric and photometric 

correspondences. 

 
Fig. 5. Joint motion schematic and lighting optimization mechanism [1] 

 

In the proposed method, the method decomposes each 

frame's photometric data into albedo and low-frequency 

ambient illumination, for an optimize surface albedo in real-

time after several frame fuses using temporally coherent 

albedo calculation and fusion. The inputs gather from the 

previous frame are seen in the first column of Fig. 5. The 

geometry and albedo after warping using the motion field, as 

well as the illumination that was calculated based on the 

input color and depth of the current picture, are seen in the 

last panel. 

Another real-time 3D reconstruction method as presented 

in BodyFusion [18], to increase the reconstruction accuracy 

of a complex human motion, a skeleton-embedded surface 

fusion (SSF) technique was introduced. For complex surface 

fusion, the SSF technique optimizes both the skeleton and 

the graph-nodes. The technique is claimed to make creating a 

full-body 3D self-portrait with a single depth camera more 

simple and real-time.  

 
Fig. 6. BodyFusion system pipeline [18] 

 

 

The illustration as shown in Fig. 6 is the proposed 

BodyFusion method for real-time 3D reconstruction. The 

connection update step and the cooperative deformation step, 

which compensate the deformation of the skeleton as well as 

the graph-node, are the major discrepancies from the 

DynamicFusion [19] pipeline. 
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Apart from the skeleton-based approach in BodyFusion, 

MaskFusion [20] on the other hand, proposed a method that 

incorporates Mask-RCNN [21], an effective segmentation 

algorithm which can forecast labels of object category for 80 

object types through its instance level segmentation 

algorithm based on image. MaskFusion is a real-time 

functional Simultaneous Localization and Mapping (SLAM) 

system competent of representing at object level in the 

scenes. It can recognize, detect, trace, and reconstruct 

multiple moving rigid objects while precisely segmenting 

and labeling each case. The method takes advantage of the 

benefits of integrating Mask-RCNN outputs with a 

geometry-based segmentation algorithm that produces an 

object edge map from depth and surface normal clues, 

allowing it to improve the precision of object borders in 

object masks. 

While in FusionMLS [22], the system incorporates the 

frame-based method that utilize the moving least square 

(MLS) reconstruction method that produced a refined set of 

points on surfaces based on local fitting of point clouds. The 

FusionMLS proposed system use multiple RGB-D camera 

setup to capture the real world to be reconstructed. The 

system is based on a client-server connection where the 

camera input (client) is sent through the network to a server 

that decompress the received data and later proceed with 

reconstruction that was done in the GPU. The reconstruction 

process consists of two parts, (1) motion estimation and (2) 

geometric surface estimation, wind-up with a rendering the 

visuals. Fig. 7 illustrates the FusionMLS system pipeline. 

 
Fig.7. FusionMLS pipeline [22] 

 

 

Apart from the skeleton-based approach, body shape 

seems to be a very strong precedent due to its complete and 

loop closed approach in terms of human performance capture. 

Hence, the DoubleFusion [23] work take full gain of the 

shape of the human and its prior motion pose, in their 

proposed method that reconstruct cloth geometry in real-time 

also the body form by using the dynamic surface 

reconstruction method in a single view. In addition, the 

methods making sure each layer simultaneously gaining 

advantage from each other. This double-layer surface 

representation approach reconstructs the model using the 

outer surface layer, and inner body layer while perform the 

depth registration. The approach is based on the skinned 

multi-person linear (SMPL) model [24]. 

Through the DoubleFusion proposed method, the system 

allows for real-time simultaneous reconstruction of the outer 

surface geometry, inner body shape, pose and motion. The 

method can be achieved by using only one depth camera, 

and without the need to do any pre-scanning efforts of the 

desired reconstruction real world model. The method 

demonstrated that it is capable of significantly improving 

efficiency in handling rapid movements as well as people 

dressed casually, all while working in real-time. Fig. 8 shows 

the results example from the proposed DoubleFusion method 

of double-layer surface representation approach. 

 
 

Fig.8. DoubleFusion results example in real-time [23] 

 

 

Furthermore, the real-time 3D reconstruction proposed 

method in SimulCap [25] is the enhanced version of 

DoubleFusion method that based on the double-layer surface 

representation approach. The SimulCap method main 

contribution consists of a multi-layer garments and body 

representation that based on the DoubleFusion [23] and the 

physics-based performance capture procedure.  

The introduced approach aims to create a live free-

viewpoint human performance with complex information 

recorded. Through incorporating fabric simulation into the 

output capture pipeline, the system will effectively model 

believable cloth dynamics and its interactions with the 

human body even in occluded body parts. Furthermore, by 

defining physical operation of depth fitting, SimulCap able 

to produce consistent results of cloth tracking with the depth 

observation while remaining physically constrained. Fig. 9 

shows the results in real-time of the 3D reconstruction 

method proposed in SimulCap. 
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Fig. 9. SimulCap results example in real-time [25] 

 

 

In a real-time 3D reconstruction method, tedious self-

scanning approach to initialize the reconstruction process can 

be a major constraint. Due to this issue, RobustFusion [26] 

method proposed a novel optimization pipeline that only 

uses the front-view input and later combine with the data-

driven volumetric fusion occupancy representation. The 

robust human volumetric capture process presented in 

RobustFusion incorporate a variety of visual cues that driven 

by data in a monocular setting devoid of the use of a pre-

scanned template. RobustFusion method able to effectively 

capture robust performance through its arrangement of 

human posture, form, parsing priors, that able to handle 

difficult human movements with the capacity to reinitialize. 

The RobustFusion pipeline, as seen in Fig. 10, involves of a 

model completion stage and a stable performance capture 

stage for live 4D results, assuming monocular RGBD input 

with numerous data-driven human visual priors. 

 
Fig. 10. RobustFusion pipeline [26] 

 

 

The Function4D on the other hand, proposed a 

volumetric capture pipeline that consist of 2 steps: (1) 

Dynamic Sliding Fusion (DSF) that fuse neighboring frames 

from the gathered frames from multiple camera input to 

produce a noise free and temporal continuous result, and (2) 

Deep Implicit Surface Reconstruction that re-render the DSF 

back into the original viewpoints. Then proceed with the 

implicit function to generate a complete and detail 

reconstruction output. Fig. 11 illustrates the system pipeline.  

 
Fig. 11. Function4D system process [27] 

V. DISCUSSION 

 

In performing a real-time 3D reconstruction, it is crucial 

to take into account the appropriate approach in order to 

produce a realistic look of the reconstructed model. This is 

inclusive with the number of camera input in the system 

setup as higher number of cameras may produce a high-

resolution reconstructed model but may be highly cost. Table 

1 presents the research works in 3D reconstruction realm 

with its proposed camera setup that incorporates either single 

or multiple, and static or moving camera placement. 

 
TABLE I.  3D RECONSTRUCTION CAMERA SETUP 

 

Year  Research Works 

Camera Setup 

Single-

camera 

Multiple-

camera 
Static Moving 

2017 

Real-Time 

Geometry, Albedo, 

and Motion 

Reconstruction using 

a Single RGB-D 

Camera [1] 

✔  ✔  

2017 BodyFusion [18] ✔  ✔  

2018 SobolevFusion [16] ✔  ✔  

2018 MaskFusion [20] ✔   ✔ 

2018 FusionMLS [22]  ✔ ✔ 
 

2018 DoubleFusion [23] ✔  ✔ 
 

2019 SimulCap [25] ✔  ✔ 
 

2020 RobustFusion [26] ✔  ✔ 
 

2021 Function4D [27]  ✔ ✔  

 

 

As we can see from Table 1, only FusionMLS [22] and 

Function4D [27] use a multiple camera setup while only 

MaskFusion [20] allow for camera movement during 

reconstruction. This is due to their proposed method that 

require multiple camera setup and use the client-server 

architecture as in FusionMLS [22], and to highlight the 

capability of their proposed method MaskFusion [20] with 

Mask-RCNN [21] adoption that capable of an instance level 

segmentation algorithm in a dynamic scene either moving 

objects or moving camera. The other research works 

presented in the Table 1 use the same single camera setup 

with a static camera arrangement as it to comply and suited 

with their proposed method that works with the mentioned 

camera setup.  

As for research work in [1] that focus on albedo, usage of 

low-frequency environmental lighting of the reconstructed 

model, BodyFusion [18] that incorporates skeleton-

embedded surface fusion that only need single camera setup 

to work, the SobolevFusion [16] method that based on 

Sobolev gradient flow, which allows for a more simple, 

quicker energy computation while preserving geometric 

information without over-smoothing using single camera 

approach,  and DoubleFusion [23] that take full gain of shape 

of human and its prior posture, in their proposed method of a 
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single-camera setup and real-time dynamic surface 

reconstruction system that simultaneously reconstructs 

general cloth geometry and inner body shape. While for 

SimulCap [23] that enhance the work in DoubleFusion with 

additional physics-based performance capture procedure, and 

RobustFusion [26] that based on data-driven that use only 

the front-view input of a single camera rig, with a model 

completion structure that used for high-resolution initial 

model creation and completion. 

Through the data presented in Table 1 shows that most of 

the researcher adopt the single camera setup with a static 

position of the camera placement. Researcher that adopts 

such method typically will implement the reconstruction 

method that based on prior information such as template or 

skeleton based, visual data-driven and the usage of machine 

learning [1, 18, 16, 20, 23, 25, 26]. While as for the 

researcher that adopt the multiple camera setup imposed 

their reconstruction method directly on the received frames 

from multiple camera input [22, 27]. Both of the camera 

setup and placement poses its own advantages as for single 

camera setup may be low in cost compared to multiple 

camera setup but may require an expensive computational 

process in retrieving or estimating the model surface 

reconstruction.  Another integral downside of single camera 

setup is these methods are susceptible to tracking failure in 

hidden areas of the scene that may be due to occlusion [27]. 

In conclusion, in this paper, we summarize the methods 

used to solve the issues of real-time 3D reconstruction of 

non-rigid objects in a dynamic environment. Despite the fact 

that some proposed method and enhancement have solved 

problems in real-time 3D modeling of non-rigid structures, 

there are still many remaining challenges to be addressed 

such as methods to achieve high resolution and preserved 

detailed reconstructed 3D model in real-time and also in the 

area of a topological aware surface reconstruction of the 

reconstructed model that may suffer due to open-close 

movement in the dynamic scene [28]. 

 

ACKNOWLEDGMENT 

 

We would like to express our appreciation to Mixed and 

Virtual Reality Laboratory (mivielab) in Vicubelab at 

Universiti Teknologi Malaysia (UTM). This work was 

funded by UTM-GUP Funding Research Grants Scheme 

(Q.J130000.2628.14J85). 

 

 

REFERENCES 

 
[1] Guo, K., Xu, F., Yu, T., Liu, X., Dai, Q., & Liu, Y. (2017). 

Real-time Geometry, Albedo, and Motion Reconstruction 

Using a Single Rgb-d Camera. ACM Transactions on 

Graphics (ToG), 36(4), 1. 

[2] Ingale, A. K. (2021). Real-time 3D Reconstruction 

Techniques Applied in Dynamic Scenes: A Systematic 

Literature Review. Computer Science Review, 39, 100338. 

[3] Divya Udayan, J., & Kim, H. (2016). Constrained Procedural 

Modeling of Real Buildings from Single Facade Layout. 

International Journal of Computer Vision and Signal 

Processing, 6(1). 
[4] Udayan, J. D. (2016). An Analysis of Reconstruction 

Algorithms Applied to 3d Building Modeling. Indian 

Journal of Science and Technology, 9, 33. 
[5] Curless, B., & Levoy, M. (1996). A Volumetric Method for 

Building Complex Models from Range Images. Proceedings 

of the 23rd Annual Conference on Computer Graphics and 

Interactive Techniques, 303-312. 
[6] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., 

Kim, D., Davison, A. J., ... & Fitzgibbon, A. (2011). 

Kinectfusion: Real-time Dense Surface Mapping and 

Tracking. 2011 10th IEEE International Symposium on 

Mixed and Augmented Reality, IEEE, 127-136. 
[7] Zach, C. (2008). Fast and High Quality Fusion of Depth 

Maps. Proceedings of the International Symposium on 3D 

Data Processing, Visualization and Transmission (3DPVT), 

1(2). 

[8] De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H. 

P., & Thrun, S. (2008). Performance Capture from Sparse 

Multi-view Video. ACM SIGGRAPH 2008 papers, 1-10. 

[9] Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., 

Rusinkiewicz, S., & Matusik, W. (2009). Dynamic Shape 

Capture Using Multi-view Photometric Stereo. ACM 

SIGGRAPH Asia 2009 papers, 1-11. 

[10] Li, H., Adams, B., Guibas, L. J., & Pauly, M. (2009). Robust 

Single-view Geometry and Motion Reconstruction. ACM 

Transactions on Graphics (ToG), 28(5), 1-10. 

[11] Sarbolandi, H., Lefloch, D., & Kolb, A. (2015). Kinect 

Range Sensing: Structured-light versus Time-of-Flight 

Kinect. Computer Vision and Image Understanding, 139, 1-

20. 

[12] Marani, R., Renò, V., Nitti, M., D'Orazio, T., & Stella, E. 

(2015). A Compact 3D Omnidirectional Range Sensor of 

High Resolution For Robust Reconstruction of 

Environments. Sensors, 15(2), 2283-2308. 

[13] Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, 

R., Kohli, P., ... & Fitzgibbon, A. (2011). KinectFusion: 

Real-time 3D Reconstruction and Interaction using a Moving 

Depth Camera. Proceedings of the 24th annual ACM 

symposium on User interface software and technology, 559-

568. 

[14] Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., & 

Stamminger, M. (2016). Volumedeform: Real-time 

Volumetric Non-rigid Reconstruction. European Conference 

on Computer Vision, Springer, Cham, 362-379. 

[15] Zollhöfer, M., Nießner, M., Izadi, S., Rehmann, C., Zach, C., 

Fisher, M., ... & Stamminger, M. (2014). Real-time Non-

rigid Reconstruction Using an RGB-D Camera. ACM 

Transactions on Graphics (ToG), 33(4), 1-12. 

[16] Slavcheva, M., Baust, M., & Ilic, S. (2018). Sobolevfusion: 

3d Reconstruction of Scenes Undergoing Free Non-rigid 

motion. Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 2646-2655. 

[17] Fadzli, F. E., Ismail, A. W., Aladin, M. Y. F., & Othman, N. 

Z. S. (2020). A Review of Mixed Reality Telepresence. IOP 

Conference Series: Materials Science and Engineering, 

864(1), 012081. IOP Publishing. 

[18] Yu, T., Guo, K., Xu, F., Dong, Y., Su, Z., Zhao, J., ... & Liu, 

Y. (2017). Bodyfusion: Real-time Capture of Human Motion 

and Surface Geometry Using a Single Depth Camera. 

Proceedings of the IEEE International Conference on 

Computer Vision, 910-919. 



Muhammad Nur Affendy Nor’a, Fazliaty Edora Fadzli & Ajune Wanis Ismail / IJIC Vol. 12:1(2022) 91-97 

 

97 

 

[19] Newcombe, R. A., Fox, D., & Seitz, S. M. (2015). 

Dynamicfusion: Reconstruction and Tracking of Non-rigid 

scenes in Real-time. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 343-352. 

[20] Runz, M., Buffier, M., & Agapito, L. (2018). Maskfusion: 

Real-time Recognition, Tracking and Reconstruction of 

Multiple Moving Objects. 2018 IEEE International 

Symposium on Mixed and Augmented Reality (ISMAR), 

IEEE, 10-20.  

[21] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask 

r-cnn. Proceedings of the IEEE International Conference on 

Computer Vision, 2961-2969. 

[22] Meerits, S., Thomas, D., Nozick, V., & Saito, H. (2018). 

Fusionmls: Highly Dynamic 3d Reconstruction with 

Consumer-grade rgb-d Cameras. Computational Visual 

Media, 4(4), 287-303. 

[23] Yu, T., Zheng, Z., Guo, K., Zhao, J., Dai, Q., Li, H., ... & 

Liu, Y. (2018). Doublefusion: Real-time Capture of Human 

Performances with Inner Body Shapes from a Single Depth 

Sensor. Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 7287-7296. 

[24] Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., & 

Black, M. J. 2015. SMPL: A Skinned Multi-person Linear 

Model. ACM Transactions on Graphics (TOG), 34(6), 1-16. 

[25] Yu, T., Zheng, Z., Zhong, Y., Zhao, J., Dai, Q., Pons-Moll, 

G., & Liu, Y. (2019). Simulcap: Single-view Human 

Performance Capture with Cloth Simulation. Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 5504-5514. 

[26] Su, Z., Xu, L., Zheng, Z., Yu, T., & Liu, Y. (2020). Robust 

Fusion: Human Volumetric Capture with Data-Driven Visual 

Cues Using a RGBD Camera. ECCV. 

[27] Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., & Liu, Y. 

(2021). Function4D: Real-time Human Volumetric Capture 

from Very Sparse Consumer RGBD Sensors. Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 5746-5756. 

[28] Li, C., & Guo, X. (2020, August). Topology-Change-Aware 

Volumetric Fusion for Dynamic Scene Reconstruction. 

In European Conference on Computer Vision, Springer, 

Cham, 258-274. 

 


