
International Journal of Innovative Computing 11(2) 67-72

67

Timetable Scheduling System using Genetic

Algorithm (tsuGA)

Lim Ying Ying & Hazinah Kutty Mammi
School of Computing, Faculty of Engineering

Universiti Teknologi Malaysia

Email: yylim1224@gmail.com; hazinah@utm.my

Submitted: 1/9/2021. Revised edition: 27/9/2021. Accepted: 26/10/2021. Published online: 15/11/2021
DOI: https://doi.org/10.11113/ijic.v11n2.342

Abstract—Current timetable scheduling system in School of

Computing (SC), Universiti Teknologi Malaysia (UTM) is done

manually which consumes time and human effort. In this project,

a Genetic Algorithm (GA) approach is proposed to aid the

timetable scheduling process. GA is a heuristic search algorithm

which finds the best solution based on current individual

characteristics. Employing GA and scheduling information such

as rooms available and timeslots needed, it is shown that

scheduling can be done more efficiently, with less time, effort and

errors. As a testbed, a web application is developed to maintain

records needed and generate timetables. Introduction of GA helps

in generating a timetable automatically based on information such

as rooms, subjects, lecturers, student group and timeslot. GA

reduces human error and human efforts in the timetable

scheduling process.

Keyword—Timetable scheduling, genetic algorithm, web

application

I. INTRODUCTION

School of Computing (SC) is one of the school of Faculty of

Engineering in Universiti Teknologi Malaysia (UTM). SC

offered for both undergraduate and postgraduate programmes.

In the year 2019, SC has a 1208 intake for undergraduate and

550 for postgraduate. Undergraduate programmes that been

offered are Software Engineering (SCSJ), Computer Networks

and Security (SCSR), Graphics and Multimedia Software

(SCSV), Data Engineering (SCSP) and Bioinformatics (SCSB).

In order to support the studies of all students, School of

Computing provides ten computer labs, seven lecture rooms and

other labs for education purposes.

Timetable scheduling is a process of creating a timetable to

fit some conditions. In timetable generation, certain constraints

must be followed, which include hard and soft constraints.

Constraints for a timetable generation included hard constraints

and soft constraints. Hard constraints are constraints that must

be fulfilled and not violated while soft constraints are constraints

that may be violated but satisfaction of the constraints are highly

desirable to produce a good timetable [9].

Timetable scheduling is a nondeterministic polynomial time

hard (NP-hard) problem which is difficult to solve by traditional

methods [10]. In SC, this procedure is done manually by the

academic office (AO). Process of trial and error is repeated to

create a timetable that does not violate hard constraints. Manual

scheduling consumed lots of efforts and time. Timetable

Scheduling using Genetic Algorithm (tsuGA) is proposed to

help in timetable scheduling for SC. It is applied in a web

application which allows the manager and directors to add

details of subjects, classroom, group of students and lecturers.

Generation of a timetable will then be executed by tsuGA based

on those input constraints by using GA. Generations of

chromosomes which each represents a solution will be created

and their fitness values will be analysed. Compared to manual

scheduling, tsuGA provides advantages in terms of efforts and

time.

II. PROBLEM BACKGROUND

Current existing timetable scheduling system for

undergraduate programmes in SC is done manually by AO. This

process is done by using trial and error to find a best timetable

to fit for five programmes, which are SCSJ, SCSV, SCSR, SCSP

and SCSB. AO assigns a lecture room to a lecture and makes

sure that there is no classroom assigned with two lectures at the

same time. If any of the timetable is found clashed, AO will then

rearrange the timetable. The timetable is then passed to

academic office administrator (AOA) to key in the timetable into

the computer system and check possible clashing of lectures.

Lim Ying Ying & Hazinah Kutty Mammi / IJIC Vol. 11 No. 2 (2021) 67-72

68

Director of each programme will then assign lecturers to each

class.

Hard constraints are constraints that must be fulfilled and not

violated while soft constraints are constraints that may be

violated but satisfaction of the constraints are highly desirable in

order to produce a good timetable. Hard constraints for a

timetable included no lecture room is assigned to two lectures at

the same time, no lecturer is assigned to two lectures at the same

time. No soft constraint is introduced in tsuGA.

Existence of clashes will only be shown after the timetable

is input into the computer system or getting comments from

students or lecturers. AO may not know the existence of clashes

during the process of manual scheduling. If any clashes are

found, the process of trial and error will be repeated to rearrange

the timetable. This procedure consumes time and effort.

Multiple trials have to be done to get the most suitable timetable

for each course and subject.

A web-based application, tsuGA is introduced to help in the

current timetable scheduling system. It uses GA to find the best

fit timetable by referring to constraints such as subject, lecture

room and group of students. Even if any changes are needed, the

procedure of checking for a new best fit timetable can be done

without much labour effort and thus increases efficiency.

Hard constraints used by tsuGA:

(a) No lecturer should be teaching more than one class at

the same time.

(b) No room is assigned to more than one class at the same

time.

(c) No subjects are clashed in each course with the criteria

of following conditions are not found:

• All sections of subject A have duplicate time with all
sections of subject B.

• Either subject A or subject B only offer one section and

the subject is not elective and subject A and subject B

have duplicate time in any section.

III. CASE STUDY

As the project focuses solely on GA, case study of systems

using GA for timetable scheduling process are chosen and

studied. GA model proposed by each case study is studied and

modified to be applied in tsuGA. As shown in Table I, three

elements compared are hard constraints, soft constraints and

optimization. In tsuGA, the chosen hard constraints focused on

are class, classroom, classroom capacity, equipment, students

and lecturers. Optimization chosen for tsuGA are tournament

elimination selection and uniform crossover.

A. Making a Class Schedule Using a Genetic Algorithm [6]

(CS1)

• A Java program introduced GA implementation in
timetable scheduling with detailed explanation.

B. On Improvement of Effectiveness in Automatic University

Timetabling Arrangement with Applied Genetic Algorithm

[7] (CS2)

• University timetable scheduling with a proposed GA
model.

C. Solving Timetable Scheduling Problem using Genetic

Algorithm [11] (CS3)

• Introduce GA using C++ with Standard Template
Library support.

D. A Utilization-based Genetic Algorithm for Solving the

University Timetabling Problem (UGA) [1] (CS4)

• Utilized GA is proposed to get best room utilization for
timetable scheduling.

TABLE I. COMPARISON BETWEEN EXISTING SYSTEMS

Features CS1 CS2 CS3 CS4 tsuGA

Hard constraints

(a) Class ✔ ✔ ✔ ✔ ✔

(b) Classroom capacity ✔ ✔

✔ ✔

(c) Equipment ✔

 ✔

(d) Student ✔ ✔ ✔ ✔ ✔

(e) Lecturer ✔ ✔ ✔ ✔ ✔

(f) Recess ✔

Soft constraints

(a) Recess

✔

Optimization

(a) 3D structure
representation

 ✔ ✔

(b) Tournament
elimination selection

✔ ✔

(c) Uniform crossover

✔ ✔

IV. PROPOSED GA MODEL

In this section, a GA model is proposed after study on current

existing systems. It is modified to fit SC timetable scheduling

process.

A. Chromosome Representation

Fig. 1 shows a three-dimensional chromosome used to

represent the chromosome of tsuGA. Each dimension represents

subject, room and timeslot id respectively. This is to ensure there

is no subject assigned with a duplicate room and timeslot. It also

eases the process to find for an available room and timeslot to

be reassigned when clashing conditions occur.

Lim Ying Ying & Hazinah Kutty Mammi / IJIC Vol. 11 No. 2 (2021) 67-72

69

Fig. 1. Chromosome Representation

B. Fitness Function

The following equations, Eq. 1 and Eq. 2, show the number

of conflicts calculation in tsuGA and the fitness value of tsuGA

respectively. The number of conflicts is computed for each

generated schedule and it is then used to calculate the fitness

value of the schedule. Ideal fitness value is 1 when there is no

conflict found in a schedule. No soft constraint is needed in this

system. No weight is used in this system as all hard constraints

are important and need to be resolved. Hard conflicts used in

tsuGA are discussed in section II.

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 = ∑ 𝑐𝑜𝑠𝑡ℎ𝑎𝑟𝑑 3
𝑖=1 (1)

where,

𝑐𝑜𝑠𝑡1
ℎ𝑎𝑟𝑑 = ∑ 𝑙𝑒𝑐𝑡𝑢𝑟𝑒𝑟_𝑐𝑙𝑎𝑠ℎ𝑘

𝑖=1 (1.1)

𝑐𝑜𝑠𝑡2
ℎ𝑎𝑟𝑑 = ∑ 𝑐𝑜𝑢𝑟𝑠𝑒_𝑐𝑙𝑎𝑠ℎ𝑘

𝑖=1 (1.2)

𝑐𝑜𝑠𝑡3
ℎ𝑎𝑟𝑑 = ∑ 𝑟𝑜𝑜𝑚_𝑐𝑙𝑎𝑠ℎ𝑘

𝑖=1 (1.3)

where,

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 (1.4)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠+1
 (2)

C. Crossover Operator

Crossover in tsuGA is designed to give better solutions by

comparing between two parent schedules before any changes are

made. Fig. 2 shows crossover pseudocode.

Fig. 2. Crossover Pseudocode.

D. Mutation Operator

Fig. 3. Mutation Pseudocode

Mutation is carried out to prevent schedules to have no

diversity, which indicates no new genes are introduced in the

current solution. In this system, mutation finds for new available

time and room that has not been used by another class. Fig. 3

shows pseudocode of mutation. Fig. 4 shows illustration for

heuristic search to get new available time slot and room.

Fig. 4 Heuristic Search Illustration

V. DESIGN AND DEVELOPMENT

A. Requirement Analysis

Requirement analysis is carried out at the initial stage of

system development to get user requirements for the system. An

interview is carried out with AO, the clerk, who is in charge of

the SC timetable scheduling process. Current workflow

discussed in Section II.

B. Analysis Phase

Use case diagram is documented to show relationships

between users and system. Total ten functions introduced in

Lim Ying Ying & Hazinah Kutty Mammi / IJIC Vol. 11 No. 2 (2021) 67-72

70

tsuGA systems for five types of users, which are, students,

lecturers, directors, manager and admin. Each of them having

different privileges to access to the system. Use case diagram is

shown in Fig. 5.

Fig. 5. Use Case Diagram for tsuGA

C. Design Phase

System architecture used in tsuGA is client server

architecture. All clients, which included students, lecturers,

manager, admin and directors will connect to the web server

through the Internet. Web server will then request data or write

data to the database.

D. Development Phase

Two applications are developed separately which are

frontend tsuGA system and backend which provides RESTful

API for communication between system and the database.

Angular framework is used to develop tsuGA interfaces while

Spring Boot framework is used to develop backend services.

Java language is chosen for the GA process. Both applications

are then deployed on Tomcat server.

VI. PROPOSED SYSTEM

A timetable must be generated by the manager before it is

available for other users. Fig. 6 shows the interface when a

timetable is being generated. A modal is shown to request the

manager to wait for the process to be done.

Fig.6. Generate Timetable Interface

Generated timetable is ready for viewing by students,

lecturers, directors and manager. Fig. 7 and Fig. 8 show

timetable view by students and lecturers respectively. Directors

and manager will have the exact timetable view as students with

additional feature to select courses. Besides, manager has unique

feature to generate a timetable.

Fig. 7. Timetable View by Student

Fig. 8. Timetable View by Lecturer

Lim Ying Ying & Hazinah Kutty Mammi / IJIC Vol. 11 No. 2 (2021) 67-72

71

VII. TESTING AND RESULTS

A. Testing Data

Details of testing data for timetable is shown in Table II.

Users are then tested with schedules offered with details below.

A collection of different types of subjects which include Generic

which are subjects taken by all programs in SC; Core which are

core subjects of the given programme; and Elective are

programme specific subjects that students can choose from.

Generic and Core subjects are compulsory subjects that must be

taken by the students.

TABLE II. OVERALL SUBJECT OFFERED DETAILS

Subject Type Number of subjects Number of sections

Generic 2 3

Core 12 28

Elective 19 28

Total 33 59

B. Results

In general, tsuGA generates timetables which fulfilled hard

constraints that have been defined in Section II. In Fig. 9, it is

shown that 93% of students have no clashed timetable while

there is one student having clashed timetable. This clashing

condition only occurred between elective subjects.

Fig. 9. Clashing Result - Student

This is due to restriction in timetable generation for elective

subjects. Not all elective subjects will have no clash with each

other. Example of clashing of elective subjects is shown in Fig.

10. It is unavoidable due to the large number of elective courses

offered to a programme, which is SCSR in this example. A

timetable has no enough timeslot to fit 14 courses offered for

3SCSR. Table III shows an example of clashing conditions of

elective courses. Clashing will only occur when three elective

courses are taken at the same semester (condition 4 and

condition 5 in Table III). In this example, students can only take

two out of three elective courses that face clashing condition

(condition 1, condition 2 and condition 3 in Table III). Clashing

condition of elective courses does not affect the conflicts of

schedule as they are optional courses instead of mandatory

courses to be taken in one semester.

Clashing conditions between elective courses can be

improved by introducing soft constraints to the system.

However, occurrence of clashing condition is unavoidable when

there is a large number of elective courses being offered to a

student group.

Fig. 10. Elective Subjects Clash in SCSR

TABLE III. TIMETABLE ELECTIVE CLASH SUMMARY

Condition

 Taking

Subjects
Clashing

Result
SCSR4473 SCSR4483 SCSR4973

Section1 Section1 Section2 Section 1

1 √ √ ✕

2 √ √ ✕

3 √ √ ✕

4 √ √ √ √

5 √ √ √ √

A few generations of timetables are created to get running

time required for a new timetable. Table IV shows time

consumption of each generation and average time required for

new timetable generation of third-year programmes. It is shown

that the average time required is around 5 minutes 34 seconds.

This shows that the proposed GA increases the efficiency of the

current timetable scheduling system which took days to

complete manual assignment of rooms and timeslots. Besides,

timetable generated by tsuGA has no conflicts with hard

constraints which means human errors can be eliminated during

the timetable scheduling process.

TABLE IV. TIME CONSUMPTION FOR TIMETABLE GENERATION

No Time Consumption

1 6 minutes 20 seconds

2 4 minutes 40 seconds

3 6 minutes

4 6 minutes 30 seconds

5 4 minutes 18 seconds

Average 5 minutes 34 seconds

Lim Ying Ying & Hazinah Kutty Mammi / IJIC Vol. 11 No. 2 (2021) 67-72

72

VIII. CONCLUSION

In a nutshell, tsuGA helps the timetable scheduling process

in SC to be more efficient in terms of human efforts and time.

Proposed GA is implemented and successfully resolves defined

hard constraints. It reduces time required and eliminates human

errors during assignment of rooms and timeslots.

This system can be expanded to combine with the course

registration system for future planning. It will allow students to

go through the timetable for subjects they would like to register

and then register through the system. GA used can be refined to

create a better timetable by using soft constraints to make sure

electives can be fulfilled at the best solutions. Furthermore, GA

can be improved by redefining hard constraints and soft

constraints with more details. By introducing soft constraints,

the generated solution could satisfy more users and reduce the

occurrence of clashing conditions between elective courses.

REFERENCES

[1] Abdelhalim, E. A. and Khayat, G. A. (2016). A Utilization-based

Genetic Algorithm for Solving the University Timetabling

Problem (UGA) [online]. Available at:

https://www.sciencedirect.com/science/article/pii/S1110016816

000703#b0350 (Accessed: 2 March 2020).

[2] Ambler, S. W. (2005). Feature Driven Development (FDD) and

Agile Modeling [online]. Available at:

http://agilemodeling.com/essays/fdd.htm (Accessed: 20 March

2019).

[3] Das P. (2016). Genetic Algorithm: An Implementation using

JavaScript and HTML5. [online]. Available at:

https://www.codeproject.com/Articles/1127321/Genetic-

algorithm-an-implementation-using-JavaScri (Accessed: 15

March, 2019).

[4] Deoras S. (2019). 5 Languages to Use for Genetic Programming

[online]. Available at: https://www.analyticsindiamag.com/5-

languages-to-use-for-genetic-programming/ (Accessed: 25

March 2019).

[5] Garg, P. (2017). 9 Things You Must Know About FDD – Feature

Driven Development [online]. Available at:

https://www.openxcell.com/9-things-must-know-fdd-feature-

driven-development (Accessed: 1 April 2019).

[6] Janković, M. (2008). Making a Class Schedule Using a Genetic

Algorithm [online]. Available at:

https://www.codeproject.com/Articles/23111/Making-a-Class-

Schedule-Using-a-Genetic-Algorithm (Accessed 20 March

2019).

[7] Khonggamnerd, P. and Innet S. (2009). On Improvement of

Effectiveness in Automatic University Timetabling

Arrangement with Applied Genetic Algorithm. 2009 Fourth

International Conference on Computer Sciences and

Convergence Information Technology, 1266-1270.

[8] Mallawaarachchi, V. (2017). Introduction to Genetic

Algorithms — Including Example Code [online]. Available at:

https://towardsdatascience.com/introduction-to-genetic-

algorithms-including-example-code-e396e98d8bf3 (Accessed 9

March 2019).

[9] Patil, M. K., Subodh, R. S. and Pawar, P. A., Narendrasingh, N.

(2014). Web Application for Automatic Time Table Generation.

International Journal of Current Engineering and Technology,

1936-1938.

[10] Sapru, V., Reddy, K., Sivaselvan, B. (2010). Time Table

Scheduling using Genetic Algorithms Employing Guided

Mutation. 2011 IEEE International Conference on

Computational Intelligence and Computing Research [online].

Available at:

https://ieeexplore.ieee.org/abstract/document/5705788

(Accessed: 9 March 2019).

[11] Sigl, B., Golub, M. and Mornar, V. (2003). Solving Timetable

Scheduling Problem Using Genetic Algorithms. 25th Int. Conf.

Information Technology Interfaces IT1 2003, 519-524.

[12] Zukanov, V. (2018). Top Java Application Servers: Tomcat vs.

Jetty vs. GlassFish vs. WildFly [online]. Available at:

https://stackify.com/tomcat-vs-jetty-vs-glassfish-vs-

wildfly/#wpautbox_latest-post (Accessed: 20 April 2019).

http://agilemodeling.com/essays/fdd.htm
https://www.codeproject.com/Articles/1127321/Genetic-algorithm-an-implementation-using-JavaScri
https://www.codeproject.com/Articles/1127321/Genetic-algorithm-an-implementation-using-JavaScri
https://www.analyticsindiamag.com/5-languages-to-use-for-genetic-programming/
https://www.analyticsindiamag.com/5-languages-to-use-for-genetic-programming/
https://www.openxcell.com/9-things-must-know-fdd-feature-driven-development
https://www.openxcell.com/9-things-must-know-fdd-feature-driven-development
https://www.codeproject.com/Articles/23111/Making-a-Class-Schedule-Using-a-Genetic-Algorithm
https://www.codeproject.com/Articles/23111/Making-a-Class-Schedule-Using-a-Genetic-Algorithm
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3
https://ieeexplore.ieee.org/abstract/document/5705788
https://stackify.com/tomcat-vs-jetty-vs-glassfish-vs-wildfly/#wpautbox_latest-post
https://stackify.com/tomcat-vs-jetty-vs-glassfish-vs-wildfly/#wpautbox_latest-post

