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Abstract—The challenge in classifying cancer may lead to 

inaccurate classification of cancers, especially sarcoma cancer 

since it consists of rare types of cancer. It is hard for the clinician 

to confirm the patient's condition because the specialist pathology 

can only make an accurate diagnosis.  Therefore, instead of a 

single omics being used to identify the disease marker, integrating 

these omics to represent multi-omics brings more advantages in 

detecting and presenting the phenotype of the cancers. Nowadays, 

the advancement of computational models, especially deep 

learning, offered promising approaches in solving high-level omics 

of data with faster processing speed. Hence, the purpose of this 

study is to classify cancer and non-cancerous patients using 

Stacked Denoising Autoencoder (SDAE) and One-dimensional 

Convolutional Neural Network (1D CNN) to evaluate which 

algorithm classifies better using high correlated multi-omics data. 

The study employed both computational models to fit the multi-

omics dataset. Sarcoma omics datasets used in this study was 

obtained from the Multi-Omics Cancer Benchmark TCGA Pre-

processed Data of ACGT Ron Shamir Lab repository. The results 

obtained for the SDAE was 50.93% and 52.78% for the 1D CNN. 

The results show 1D CNN model outperformed SDAE in 

classifying sarcoma cancer. 

 

Keywords—Multi-omics analysis, Cancer classification, Neural 

Network, Stacked Denoising Autoencoder (SDAE), One-

dimensional Convolutional Neural Network (1D CNN)  

  

I. INTRODUCTION  

 

From the early days of computers being built until now, 

these intelligent machines gained more and more attention, 

especially when we are in the fourth industrial revolution since 

the data itself has become an integral part of our lives. As the 

volume of data is growing every day, it becomes a barrier for 

academia and researchers to understand the meaning of the 

data, especially biomedical data. However, the capability of big 

data has created a bigger opportunity for health care research in 

drug invention, advanced treatment, customized medicine that 

can improve patient diagnosis and cost-effectively 

(Adibuzzaman et al., 2018).  Every data is treated and handled 

differently based on the field of study and the degree of the 

perspective of the study. 

The rise of technology and evolution of human studies with 

the initiation from Genome-Wide Association Study (GWAS) 

and Next Generation Sequencing (NGS) produce a new field of 

study, which is bioinformatics. Bioinformatics is an 

interdisciplinary field mainly involving molecular biology and 

genetics, computer science, mathematics, and statistics 

(Can,2013), where they applied computational methods to 

analyze and interpret biological data. It provides a broad 

understanding based on the correlated mechanisms such as 

transcriptome, genome, epigenome, and proteome profiling 

(Hu et al., 2018). In the medical era, health and disease can be 

distinguished using multi-omics. 

The advanced growth of data in medical applications in 

clinical settings and healthcare affect the bioinformatics field to 

analyze those data. As the gap of knowledge increases, many 

researchers are trying to transform the data into more 

understandable so that it can provide more useful information. 

One of the methods is profiling multi-omics able to administer 

advantageous understanding and guidance for curative targets 

and the development of biomarkers by integrating analysis. 



Nur Sabrina Azmi et al. / IJIC Vol. 12 No. 2 (2022) 73-80 

 

74 

 

Comprehensive characterization of patients using multi-omics 

methods was the advanced revolution assembled by the Human 

Genome Project (HGP) and powered by academia and 

biotechnology companies (Goodwin et al., 2016).  

The main component of multi-omics is the single omics 

itself. The omics indicate the molecular properties of an 

organism based on a biological study such as metabolomics, 

proteomics, transcriptomics, genomics, and epigenomics 

(Chung et al., 2018). The multi-omics approach represents the 

relationship between omics and diseases based on the 

interrelation of omics. Integrated omics deliver more insight, 

such as biological pathways or different processes between the 

disease and control groups (Hasin et al., 2017, Manzoni et al., 

2018).  The study of omics debriefs millions of markers with 

similar biochemical properties where single omics contribute 

limited observation of disease while multi-omics improved 

understanding of disease etiology and molecular function from 

different omics levels (Sun et al., 2017). 

According to the National Cancer Institute, in 2018, an 

estimated 609,640 out of 1,735,350 people will die because of 

cancer in the United States. The report concluded that deaths 

majorly came from cancers. As a precaution, an efficient 

diagnosis needs to be accurate to detect these cancerous 

diseases so that proper treatment can be given to these patients. 

With the advancement of technologies, deep learning models 

are favored by others because of the capability to represent the 

internal features in the form of a high-level model problem 

(Bacciu et al., 2018). The large size of multi-omics data results 

in high bias and variance to the results, especially in 

classification (van Karnebeek et al., 2018). Therefore, deep 

learning approaches corporate well with multi-omics data to 

classify cancers. 

 

II. PREVIOUS WORKS 

 

The rapid evolution of machine learning on multi-omics 

analysis offers a comprehensive biological complexity and 

intrinsic correlation between omics layers significantly in 

cancers. Despite other fields having almost entirely been 

digitized, pathologists still heavily rely on analogue 

technologies, such as microscopes, glass slides, and written 

reports to diagnose sarcoma. Hence, the researchers developed 

several computational models that implement artificial 

intelligence in pathological sarcoma management, focusing on 

omics-based data features. There are three commonly deep 

learning models used such as deep neural network (DNN), 

recurrent neural networks (RNN) and CNN. 

In short, DNN is a fully connected neural network that is 

categorized into three main techniques such as multilayer 

perceptron (MLP), autoencoder (AE), and deep belief network 

(DBN). Unfortunately, MLP, AE and DBN application purely 

in sarcoma studies is limited due to the highly heterogeneous 

group with various subtypes. However, the performance of AE 

compared to MLP and DBN are prominent in general. AE 

ignores the data noise to reduce data dimension and extract vital 

biological information. Besides, AE has been acknowledged to 

analyze high-dimensional gene expression data (Chen et al., 

2016, Khalili et al., 2016) and integrate heterogeneous data 

(Miotto et al., 2016, Chen et al., 2016). Apart from denoising 

autoencoder (DAE), SDAE promises improvement in the 

model performance (Vincent et al., 2010). SDAE is efficient to 

abstract high layer features such as multi-omics. 

In medical imaging applications, the performance of CNNs 

is not debatable. Since the medical images often consist of high 

multi-dimensional, CNN reduces the dimension of data 

representing bind input images to classification. In conclusion, 

several previous works of deep learning architecture in previous 

studies are in Table I. Thus, we propose to implement and 

compare the performance of two different algorithms: SDAE 

and CNN, with multi-omics sarcoma cancer data. 

 
TABLE I.  SUMMARY OF PREVIOUS WORKS BY PAST RESEARCHER  

 

Architecture Previous Works 

DNN ● Protein structure prediction (Lyons et al., 2014; 
Heffernan et al., 2015) 

● Gene expression regulation (Leung et al., 2014; 

Zhang et al., 2018) 

● Anomaly classification (Rasool et al., 2018) 

MLP ● Predict the effects of the genetic variants using 

MLP and SAE (Xie et al., 2018) 
 

AE ● SAE - Protein amino acid sequences (Heffernan et 

al., 2015) 

● Stacked sparse autoencoder (SSAE) - The 

classification of births observations (Fergus et al., 
2015) 

DBN ● Amino acid sequences (Kesh and Raghupathi, 

2004) 

● Protein secondary structure prediction (Lyons et 
al., 2014) 

● Breast Histopathology Images (Beevi et al., 2017) 

RNN ● Identify non-coding RNAs (ncRNAs) (Hill et al., 

2004) 

CNN ● Biosensors (Page et al.,2014) 

● Gene expression regulation (Leung et al., 2014; 

Lee and Yoon, 2015) 

● Transcriptomic (Jurman et al., 2017) 

 

 

III. MATERIALS AND METHOD 

 

The methodology design starts with data pre-processing, 

where redundant, outliers and missing data are handled before 

integrating multi-omics to enrich raw data into desired output 

for analysis (refer Fig. 1). The next step is selecting highly 

correlated features with the targeted class, then reducing 

dimension of the dataset and training SDAE and 1D CNN with 

the dataset. Lastly, the testing and evaluation phase is where the 

accuracy performance of the model in classification technique 

compares both methods in classifying sarcoma cancer. All 

methodology steps below are done using Python programming 

language in the Google Colaboratory environment. 
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Fig. 1. The methodology of the study 

 
 

A. Omics Datasets 

 

In this study, the omics datasets are obtained from the 

ACGT Ron Shamir Lab website and downloaded from the 

Multi-Omics Cancer Benchmark TCGA Pre-processed Data 

(Ron Shamir's lab – Tel Aviv University, 2022). Datasets in the 

Multi-Omics Cancer Benchmark TCGA Pre-processed Data 

repository contains 11 different types of cancers, including the 

clinical data of The Cancer Genome Atlas (TCGA) datasets of 

patients. Briefly, the dataset for every kind of cancer consists of 

ribonucleic acid (RNA) expression, deoxyribonucleic acid 

(DNA) methylation, microRNA and survival patient data of 

cancer. 

 
TABLE II.  THE TOTAL NUMBER OF FEATURES BASED ON EVERY TYPE OF 

OMICS  

 

Omics type Dataset Number of 

features 

Number of 

samples 

Transcriptomics Gene expression 20531 265 

Genomics MicroRNA 1046 263 

Epigenomics DNA methylation 5000 269 

 

 

Throughout this study, three data types are used: gene 

expression, microRNA, and DNA methylation, representing 

different types of omics in the sarcoma cancer dataset. The 

datasets contain various features expression levels based on the 

dataset type of other numbers of classes. There are four types 

of classes in the sarcoma cancer dataset: primary tumor, 

recurrent tumor, solid tissue normal, and metastatic. Table II 

shows the summary of datasets used in the study. 

 

B. Data Pre-Processing  

 

The first crucial step in the methodology design is data pre-

processing. This step aims to come up with “clean” and “tidy” 

datasets that are fitted for successful statistical analysis while 

avoiding outliers in the data (Salgado et al., 2016). Data pre-

processing is an iterative process where it needs to be done until 

the data meet the purpose of the analysis (Salgado et al., 2016). 

A snippet of the gene expression dataset containing gene 

expression values based on the sample is shown in Fig. 2 below. 

The microRNA and DNA methylation datasets are similar to 

gene expression, including the expression values respective 

features in the omics. 

 

 
Fig. 2. Raw gene expression dataset 

 

 

Several distinct steps are involved in pre-processing data. 

The general steps taken to pre-process data are data cleaning, 

integration, transformation, and reduction (Son et al., 2006). 

Since the datasets obtained from the repository are already pre-

processed, the checking needs to be done to ensure no missing, 

noisy, and redundant data. As a result, there are no missing 

values in the dataset. Next, transform data into values of a 

format, scale or unit that is more suitable for analysis (Son et 

al., 2006). The approach used in data transformation is 

normalization. This method scaled numerical variables in a 

range of 0 to 1. 

 

C. Integration of Multi-Omics 

 

The objective of this phase is to produce a multi-omics 

dataset from three single omics through the integration process. 

The integration of multi-omics methods highlights the 

interrelationships of the functions and the biomolecules 

involved between omics as different layers are encouraged to 

explain the biology complexes systematically and holistically 

(P. Chalise and B. L. Fridley,2017). The integration of multi-

omics used in this study is a concatenation method combining 

the omics based on the patient id by using “merge” python 

function. As a result, a multi-omics dataset that contains 271 

samples with 26577 features are produced, as shown in Table 

III below. 
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TABLE III.  THE TOTAL NUMBER OF FEATURES AFTER INTEGRATION 

 

Omics type Number of features Number of samples 

Multi-omics 26577 271 

 

 

D. Balancing Class 

 

The focus of this study is to create a multi-omics that 

contain transcriptomics, genomics and epigenomics in the 

samples. Hence, the samples that did not fulfil the conditions 

are removed (10 samples). Earlier, the datasets contained four 

classes, but after data pre-processing is carried out, there is no 

sample in solid tissue normal class while metastatic class 

contain only one sample in the multi-omics dataset. The low 

number of samples in the metastatic class needs to remove due 

to the huge gap between other classes. Hence, binary 

classification is done to classify primary tumor and recurrent 

tumor. 

Fig. 3 shows the distribution of class in the multi-omics 

dataset. The big gap between the samples in both classes is 

called imbalance class. Imbalance class in multi-omics often 

occurred in diseases classification (Haas et al., 2017). For 

instance, the most class for hypertension is primary 

hypertension with 95%, while 5% of endocrine hypertension 

class shows as minority class (Rimoldi et al., 2014). As a result, 

machine learning with imbalanced data resulting overfitting. 

Therefore, this study considered over-sampling minority class 

as the under-represented class compared to other techniques 

(Reel et al., 2021).   

 

 
Fig. 3. Graph of distribution of class 

 

 

The samples in recurrent tumor class are up sampled. The 

method is called random oversampling, where a common 

technique to oversample the minority classes to increase the 

number of minority observations until a balanced dataset has 

been reached. Thus, both classes contain the same amount of 

sample (180 samples), as shown in Fig. 4 below. 

 

 
Fig. 4. Graph of distribution of class after random oversampling 

E. Feature Selection 

 

Using the support vector machines recursive feature 

elimination (SVM-RFE) method by manually selecting high 

correlated features with respective class, 21577 out of 26577 

features are selected to rank the variables to be chosen. Around 

5000 lowly correlated features in the dataset are removed. The 

aim of the method is by quantifying the changes in the cost 

function with presume the estimated value constant. Hence, the 

retraining variable can be removed to avoid by the classifier. In 

simple words, when variable with p ranked and 1 ranked 

variable are compared, p is considered the least relevant 

variable. After the method ranked the features, 21577 features 

in the top rank that has been selected. Table IV below shows 

the summary of multi-omics dataset after using SVM-RFE. 

 
TABLE IV.  THE TOTAL NUMBER OF FEATURES AFTER USING SVM-RFE 

 

Omics type Number of features Number of samples 

Multi-omics 21577 360 

 

 

F. Dimensionality Reduction 

 

The most extensive dimensionality reduction method is 

Principal Component Analysis (PCA) (Ringnér,2008). In 

machine learning classification problems, high number of 

features challenges a model to train the data because of the high 

dimensional space. PCA reduces the number of random 

variables by obtaining a set of principal variables with minimal 

loss information. PCA finds the directions of the most 

significant variance in the data set and represents each data 

point by its coordinates along each of these directions. PCA 

produce several principal components (PC) which the sequence 

of PC contains the highest variance. As the number of PC 

increases, the variance of the dataset represented decreases. 

Higher variability of components is captured in the first 

principal component (PC1). The second principal component 

(PC2) captures more information than the third, and so on. In 

this study, PCA identified only PC1 and PC2, representing the 

multi-omics dataset's highest variance. Hence, PC1 and PC2 are 

further used in this study as features. The summary of multi-

omics data after using PCA is shown in Table V below. 

However, the total amount of information in PCs is 33.71% 

which do not represent 90% of the dataset.  

 
TABLE V.  PCA DIMENSIONALITY REDUCTION RESULT 

 

Omics type Number of features Number of samples 

Multi-omics 2 360 

 

 

Figure 5 shows the visualization of PCA where the red dot 

cluster represents the primary tumor while green dots represent 

the recurrent tumor. The cluster of primary tumor datasets is 

gathered, while recurrent tumor datasets are dispersed instead 

of clustering together, affecting classification performance 

since lower information is captured. 
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Fig. 5. The graph contains PC1 and PC2 

 

 

G. Stacked Denoising Autoencoder 

 

Using the hyperparameters as shown in Table VI, the pre-

train part of SDAE is built. The input data refers to reduced 

dimensionality of multi-omics dataset. With 0.5 gaussian noise 

are added to the multi-omics to produce a corrupted input. The 

special about DAE is that it trained the model to reconstruct the 

corrupted version of input data without noise applied to it 

earlier in the process. Hence, DAE is considered as a feature 

extraction layer in a pre-training layer where the result of DAE 

is the output for fully connected layer and classifier layer.  

 
TABLE VI.   HYPERPARAMETER OF PRE-TRAIN 

 

Hyperparameter setting 

Gaussian noise 0.5 

Layers [2, 1] 

Epoch 400 

Optimizer Adamax 

Activation ReLU 

Loss MSE 

 

 

The activation function used in the autoencoder (encoder 

and decoder) is Rectified Linear Unit (ReLU) Activation 

Function. ReLU is a famous activation practiced the most in 

neural networks, including CNN (Chandra and Sharma,2016). 

The combination of sigmoid-based or tanh-based with ReLU in 

deep networks allows the optimization and learning to be easily 

done if the number of layers and number of nodes are huge 

(Upadhyayula and Venkataramanan,2020).  After a model of 

SDAE developed in the Google Colaboratory environment, the 

model is trained using a testing dataset. With 400 epochs, the 

multi-omics dataset is trained in the model. The loss function is 

generally used in regression using mean squared error (MSE).  

SDAE consists of two phases which are pre-train and fine-

tuning. After pre-train the model, the fine-tuning of the model 

is conducted. Fine-tuning is the most important phase to 

evaluate the classification of multi-omics cancer data. Fine-

tuning helps the model be fine-tuned to minimize the error in 

predicting the class trained by the training dataset. After 

encoders stack training, top of the stack is added with an output 

layer. Hyperparameters of fine-tuning such as activation, 

optimizer and loss are assigned with parameters as describe in 

Table VII.  

As for the sigmoid activation function chosen in the study 

is because the output produced within range of 0 until 1 

(Upadhyayula and Venkataramanan,2020). Binary 

classification used in the study are 0 that represent “Primary 

tumor” and 1 that represent “Recurrent tumor”. Hence the 

sigmoid function is the most suitable activation function to 

predict the classes in the dataset as the output. In short, sigmoid 

activation function is used as the classifier layer to predict 0 to 

1 range of the target class. The purpose of the implementation 

of the “Adam” optimizer is to handle sparse gradients on highly 

noised data such as multi-omics, while “binary_crossentropy” 

loss suits binary classification where the target values are in the 

set between 0 and 1.  

 
TABLE VII.  TABLE HYPERPARAMETER OF FINE-TUNING 

 

Hyperparameter setting 

Epoch 100 

Activation Sigmoid 

Batch 16 

Optimizer Adam 

Loss Binary_crossentropy 

 

 

Based on the epoch, we can conclude that the performance 

measurement of the accuracy of SDAE is 50.93%, with 0.0493 

loss. The loss value based on the epoch decreases as the epoch 

increases while model accuracy increases. Since the model 

learns from the loss function of the algorithm, it is evaluated on 

the performance of the method based on given data. If 

predictions deviate too much from actual results, loss function 

will cough up a large number. Gradually, with the help of some 

optimization function, the loss function learns to reduce the 

error in prediction. 

The model testing concludes the performance of the SDAE 

model by obtaining 50.93% of accuracy, 50.93% of sensitivity 

and 67.48% of F1-Score. The summary of SDAE model 

accuracy and loss is shown in Table VIII below.  

 
TABLE VIII.  TABLE FINAL RESULTS OF SDAE MODEL LOSS AND ACCURACY  
 

Model Model accuracy Model loss 

SDAE 50.93%  70.94% 

 

 

H. One Dimensional Convolutional Neural Network 

 

The second model of the proposed method is 1D CNN. It 

used one dimensional for the input because the multi-omics 

dataset only consists of the same type of expression (numerical) 

values in the data structure. The hyperparameters implemented 

in 1D CNN is shown in Table IX. 

 
TABLE IX.  TABLE HYPERPARAMETER OF 1D CNN MODEL  

 

Hyperparameter setting 

Filter 64 

Kernel size 4 

Activation Sigmoid 

Loss mse 

Optimizer adam 
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Fig. 6 shows the flow of the architecture of the 1D CNN 

model from the input layer until the classifier layer.  

 

 
Fig. 6. The architecture of the proposed 1D CNN model 

 

 

The details of each layer are discussed below: 

a) Input data: Input data is obtained from the result of 

PCA. Next, the matrix must be initialized for the n x m value. 

The n refers to the total number of features which is 26577, 

while m refers to the dimension 1.  

b) Convolutional layer: Apply filters to the input to 

generate the feature maps or the activation maps using the 

sigmoid activation function. According to Fig. 6, the function 

filters refer to feature maps which are 64. Feature maps refer to 

the number of times the inputs are integrated whole kernel size 

is 4. Kernel size is the number of input time steps considered as 

the input sequence is read onto the feature maps. 

c) Max pooling layer: To reduce the complexity of output 

and prevent overfitting upon feature map by creating a new set 

of the same number of pooled feature maps separately by taking 

the maximum value of the feature map. The input of this layer 

is the convolutionized multi-omics dataset. Pooling involves 

selecting a pooling operation, like a filter applied to feature 

maps. The pooling operation or filter size is smaller than the 

size of the feature map. 

d) Batch Normalization: This layer reduces the amount 

by what the hidden unit values shift around (covariance shift). 

It also allows each layer of a network to learn a little bit more 

independently of other layers.  

e) Dense layer: A dense layer is just a regular layer of 

neurons in a NN where each neuron receives input from all the 

neurons in the previous layer, thus densely connected.  

f) Dropout layer: Weights in the dropout layer are 

randomly assigned. Since we chose a rate of 0.4, 40% of the 

neurons will receive a zero weight. The network becomes less 

sensitive to react to smaller variations in the data. Therefore, it 

should further increase our accuracy on unseen data.  

g) Dense layer with sigmoid activation: Reduce the 

vector of height j to a vector of two since we have two classes 

that we want to predict (“Primary tumor”, “Recurrent tumor”). 

The activation function used in this study is sigmoid because it 

forces all two outputs of the neural network to sum up to one. 

Therefore, the output value will represent the probability for 

each of the two classes. 

As the result of the designed architecture of the proposed 

1D CNN method, the model is compiled using the loss function 

of mse and adam optimizer. The model testing concludes the 

accuracy of the 1D CNN by obtaining 52.78% of accuracy, 

52.78% of sensitivity and 69.09% of F1-Score. The summary 

of 1D CNN model accuracy and loss is shown in Table X 

below. 

 
TABLE X.  TABLE RESULTS OF 1D CNN MODEL LOSS AND ACCURACY  

 

Model Model accuracy Model loss 

1D CNN 52.78%  52.78% 

 

 

IV. RESULT AND DISCUSSION 

 

Before training the model, the multi-omics dataset is 

separated into training and testing datasets. Separations of the 

dataset are divided into 70% training and 30% for testing with 

actual 252 and 108 samples, respectively. Data partitioning is 

done to train the model with several training data and then 

tested with testing data to predict the class based on the training 

dataset. Table XI below shows the data partitioning of multi-

omics data for both models. 

 
TABLE XI.  TABLE DATA PARTITIONING  

 

Dataset Data Division Total  

Training 

(70%) 
Testing 

(30%) 

Multi-omics 252 108 360  

 

 

A graph comparing the accuracy and loss of both models is 

shown in Fig. 7 below. Based on the result, 1D CNN 

outperforms SDAE with 52.78% accuracy with 1.85% slight 

difference in the accuracy result. From the observation, both 

models do not produce over 90% accuracy, as the researchers 

and literature claim. Several possible answers lead to lower 

accuracy performance. Firstly, the omics dataset. According to 

the PCA result, the representation of the dataset on PCA is only 

33.71%. The good representation of data needs to acquire more 

than 90% to represent the datapoint in PCA. This shows that the 

variation of information is lower.  

 

 
Fig. 7. Graph of SDAE and 1D CNN accuracy 

 

 

We conclude that the accuracy of the models maintains 

between 50% during evaluating the testing dataset while model 

loss based on the epoch of the model between training and 

testing dataset overlap with each other. However, a good 

representation of data classified in the model must produce 
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smaller loss values, but in this SDAE model, the loss function 

consists of a bit high of loss values and not decreasing along 

with the epoch. 

 

V. CONCLUSION 

 

The study is an exercise to explore the model performance 

of SDAE and 1D CNN using multi-omics data. The study 

concludes that 1D CNN outperforms SDAE. To the best of our 

knowledge, limited works of sarcoma data (Ron Shamir's lab – 

Tel Aviv University, 2022) restrict our analysis.  We believe 

that the main component of this study is data pre-processing, 

which impacts the performance of both models. The 

implementation of a simple concatenate-based method used in 

this study to integrate multi-omics data does not consider the 

regulatory relationship between omics. Hence, the integrated 

omics result in more complex, noisy and no interrelation omics. 

Moreover, two approaches of dimension reduction are carried 

out: feature selection using SVM-RFE and feature extraction 

using PCA. There is a possibility of removing essential features 

in the approaches from the multi-omics dataset. Thus, further 

study is proposed to produce higher accuracy where several 

limitations are discussed to be improved. 
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