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Abstract—Next Generation Sequencing (NGS) is a modern 

sequencing technology that can determine the sequences of RNA 

and DNA faster and at lower cost. The availability of NGS data 

has sparked numerous efforts in bioinformatics, especially in the 

study of genetic variation and viral sequence detection. Viral 

sequence detection has been one of the important processes in 

studying virus-induced diseases. Common methods in detecting 

viral sequences involve alignment of the sequence with existing 

databases, which remains limited as these databases might be 

incomplete and difficult to detect highly divergent viruses. Thus, 

machine learning and deep learning have been used in this 

regard, to unveil the patterns that distinguish viral sequences 

through learning from the NGS data. This study focuses on viral 

sequence detection using convolutional neural network (CNN). 

This study intended to investigate how CNN model can be used 

for analysis of NGS data and develop a CNN model for detecting 

potential viral sequences from NGS data. The CNN architecture 

used for this study is based on an existing design that divided into 

two branches namely pattern and frequency branch that cater 

for extracting different aspects of information from the data and 

lastly combined into a full model. This study further 

implemented slightly modified architecture that includes 

additional convolution layer and pooling layer. Then, parameter 

tuning is implemented to identify near optimal parameters for 

the CNN to elucidate the performance impact. The evaluation of 

the optimized CNN model is done using a dataset with 18,445 

DNA sequences. The results show that the CNN model in this 

study achieved a better performance compared with existing in 

terms of area under receiver operating characteristics curve 

(AUROC) for full model (+0.1434). 

 

Keywords—Next generation sequencing, viral sequence detection, 

convolutional neural network, bioinformatics 

I. INTRODUCTION 

 

Next Generation Sequencing (NGS) is a high-throughput 

sequencing that can sequence deoxynucleic acid (DNA) and 

ribonucleic acid (RNA) more quickly and cost effective than 

conventional sequencing methods such as Sanger Sequencing. 

Analysis of the entire human genome can be done in a single 

sequencing experiment and in a short time using NGS 

technology [1]. Apart from that, the determining sequence of 

DNA and RNA using NGS technology helps in the study of 

genetic variation [2-4] and viral sequence detection [5]. The 

entire assemble of viruses in and on the human body is known 

as human virome. Some viruses may cause disease in the 

human body. In fact, a great number of different viruses can be 

found in the biospecimen of humans. Nevertheless, just some 

human viruses have been found, and there are numerous other 

viruses that have not yet been reported [6]. The analysis and 

classification of the viral sequences remain a big challenge for 

researchers. 

Commonly, to detect the potential viral sequences in human 

biospecimens, the traditional alignment-based classification 

such as Basic Local Alignment Search Tool (BLAST) is used. 

In BLAST, the sequences are compared to discovered genomes 

in the databases and estimate the similarity that the sequences 

shared. However, the limitation of BLAST is that the public 

databases are insufficient [7], human NGS data might contain 

many extremely divergent viruses that do not have homologs to 

the curated genomes in the databases. As a result, BLAST 

usually categorized these sequences as “unknown” [8].  

HMMER3 [9] is another commonly used technique for 

detecting viral sequences in human biospecimen. This 
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algorithm implements profile Hidden Markov Models 

(pHMM) and vFam, which is a HMMER3 database that is built 

from every viral protein that exists in RefSeq database. This 

technique is more likely to be used to detect distant homologs 

as the sequences are differentiated to the viral families. 

However, this method uses a reference database which resulted 

in similar limitation of BLAST when analyzing highly 

divergent viruses.  

Deep learning and machine learning have been used to 

unveil the patterns that distinguish viral sequences through 

learning from the NGS data. There are various techniques that 

have been used such as Random Forest [10, 11], Artificial 

Neural Network [12, 13] and especially Convolutional Neural 

Network (CNN) has been shown with good performance in 

several existing works [5, 6, 14, 15]. For example, Ren and 

colleagues developed a model implementing CNN that takes 

DNA sequences to identify viruses from prokaryotes [14]. 

While Tampuu and colleagues introduced a model that 

implement CNN to detect viruses in human biospecimen [6]. 

However, the performance of CNN could be affected by how 

it’s designed and the choice of hyperparameters setting.  Thus, 

in this study, CNN is used for further investigation in its 

performance in detection of potential viruses from human NGS 

data by implementing different encoding methods, 

hyperparameter settings and the architecture design.  

 

II. MATERIALS AND METHODS 

 

A. Dataset 

 

The dataset used in this study is extracted from 

metagenomics assembled contigs collected from 19 different 

experiments [6]. Sequences are given in letters “ATCG…” with 

the length of 300 and the labels are 1 or 0 to represent virus or 

non-virus, respectively. There are 18,445 DNA sequences in 

the dataset used in the proposed solution, with 17,713 

(96.03%) classed as non-viral sequences and 732 (3.97%) 

classified as viral sequences. Following that, the dataset is 

divided into three sections: training (80%, 14756 sequences), 

testing (10%, 1845 sequences), and validation (10%, 1844 

sequences). 

 

B. Preprocessing 

 

The previous work by Tampuu and colleagues [6] have 

shown that utilizing the one-hot encoding method to transform 

DNA sequences into matrix format of numerical numbers can 

get good results in the CNN model. However, other studies 

employed ordinal sequencing, substituting one-hot encoding 

due to the high dimensionality of the one-hot encoded input 

data [17]. In this study, both preprocessing methods are used to 

encode the DNA sequences to construct different CNN models 

and the performance of both models is compared. Basically, in 

one-hot encoding, the nucleotide bases are transformed into a 

matrix of 0s and 1s with the size of 300 (size of the sample) x 5 

(five unique nucleotide base) for each sample, it converts 

nucleotide A as [1, 0, 0, 0, 0], nucleotide  C as [0, 1, 0, 0, 0], 

nucleotide  G as [0, 0, 1, 0, 0], nucleotide T as [0, 0, 0, 1, 0] 

and N as [0, 0, 0, 0, 1], resulted a final matrix of 18445 x 300 x 

5 at the end. The letter ‘N’ basically represents detected 

nucleotide that wasn’t A, T, C, and G, or also known as noise 

in this case. While ordinal encoding transforms nucleotide 

bases of a sample into ordered numerical values where 

nucleotides A, C, G, T, N are represented as 0.25, 0.5, 0.75, 1.0 

and 0, respectively. This resulted in a final matrix with the size 

of 18445 x 300 x 1. Here, during the ordinal encoding, ‘N’ is 

represented as 0 since it represents noise (any bases other than 

A, T, G, C) so that in the encoded outcome, ‘N’ will not play 

any role in the analysis. Fig. 1 illustrates the example of both 

preprocessing methods while Fig. 2 depicts the dimensions of 

the input data that were applied to both preprocessing methods. 

 

  
Fig. 1. Preprocessing method: (a) One-hot encoding; (b) Ordinal encoding 

 

 
Fig. 2. The dimension of the input data that applied: (a) One-hot encoding; (b) 

Ordinal encoding 

 

 

C. CNN Architecture 

 

The CNN architecture in this study is based on the existing 

ViraMiner by Tampuu and colleagues [6]. It comprises two 

branches of models namely pattern branch and the frequency 

branch. The pattern branch model intends to learn and return 

the degree to which certain DNA sequence patterns were 

utmost matched across the entire DNA sequence. Therefore, in 

this branch, the convolution layer is followed by global max 

pooling which indicates that only one utmost activation value 

can be passed on to the next layer from each filter. The 

downside of this branch is that other data, for instance how 

frequently an excellent match is discovered, is not covered. 
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As for the frequency branch, it is used to solve the pattern 

branch's shortcoming. As its name implies, the frequency 

branch returns the frequency of the pattern. Thus, the 

frequency branch implements the global average pooling after 

the convolution layer. Although the maximal activation 

information is lost, information regarding the frequency is 

gained in this branch because if just a few good matches are 

found, the average cannot be high.  

 
Fig. 3. Workflow of (a) Pattern model, (b) Frequency model and (c) 

Full model 

 

 

Both pattern and frequency branches provide different 

types of information that are merged into the full model where 

the trained network from both branches are fed into the 

concatenate layer in the Keras library that merges as the full 

model. The output node with the sigmoid activation function is 

then added. The activation function converts the weighted sum 

of inputs into a probability that ranges between 0 and 1 (Eq.1). 

 

 (1) 

 

The workflow is illustrated in Fig. 3. For model training, 

both pattern and frequency branches are trained individually, 

which implies that each branch generates its own model, which 

is then integrated to form a full model. Finally, there are three 

models that can provide the performance report separately 

(pattern model, frequency model, and whole model).  

 

D. Hyperparameter Tuning 

 

Hyperparameter tuning is used to determine which 

combination of hyperparameters delivers the greatest result for 

the pattern and frequency model. This study focus on four 

hyperparameters namely filter size, layer size, droupout rate 

and learning rate. Filter size and layer size impacts on how 

much information is extracted during the convolution. Dropout 

rate is crucial for avoiding overfitting while learning rate 

would determine the speed of the model adapts to the problem. 

The HParams Dashboard in Google Colab is used to tune the 

hyperparameters. Each hyperparameter combination from the 

given range undergoes model training for 5 epochs during 

hyperparameter tuning. The finest model is then picked 

according to the highest validation AUROC. The 

hyperparameters that involve in the tuning are filter size, layer 

size, dropout rate and learning rate. The range of each 

parameter used is as follows: 

 

• Filter size: 6-14 (Pattern branch); 8-16 (Frequency 

branch) 

• Layer size: 1000, 1200, 1500  

• Dropout rate: 0.1, 0.5 

• Learning rate: 0.01, 0.001, 0.0001 

 

The results for each parameter are presented in separate 

graphs that show the mean and max value of validation 

AUROC of every value in the selected range after the 

hyperparameter tuning is completed. If the validation AUROC 

is continuously increasing or decreasing within the selected 

range based on the visible result for parameter filter size, a new 

parameter range is picked for another hyperparameter tuning. 

This is because if the performance is fluctuating continuously, 

it indicates that the optimal value for that parameter to achieve 

the best result may be outside of the range selected. The 

hyperparameter tuning and model training workflow is 

depicted in Fig. 4. 

 

 

Fig. 4. The workflow of hyperparameter tuning and model training 
 

 

E. Model Building 

 

The way to set the combinations of hyperparameters is 

based on the value of each parameter that produces the highest 

mean and max of the validation AUROC. If the highest mean 

and maximum values are different, each value will form a 

combination with the other parameters. All the combinations 

are then applied to train different models. The models were 

then trained for a maximum of 30 epochs, however, if the 

validation AUROC does not improve for 6 continuous epochs, 

the training process stops. The model is saved if validation 

AUROC is increased after each epoch. After each combination 

of hyperparameters has gone through the model training, the 

best model was chosen based on the highest validation 

AUROC. The best model from the Pattern branch and 
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Frequency branch are then utilized to train the full model. Fig. 

4 also illustrates the workflow of model training. 

 

F Implement of modified CNN structure 

 

A modified CNN model architecture is used in this study to 

train the same dataset to learn more about CNN in analyzing 

NGS data. The initial architecture that based on Tampuu and 

colleagues [6] is modified by adding a pair of convolution and 

pooling layer (max pooling layer for Pattern branch, average 

pooling layer in Frequency branch). Some researchers also 

used a similar CNN architecture in their findings, which 

comprises two convolutional layers and two pooling layers 

[18-19]. The new CNN architecture comprises 2 convolution 

layers, 2 pooling layers, 2 dropout layers and 2 fully connected 

layers as shown in Fig. 6. 
 

 
Fig. 6. Modified architecture of CNN in this study 

 

 

III. RESULTS 

 

The results of the hyperparameter tuning for both pattern 

branch and frequency branch models in different preprocessing 

methods (one-hot encoding and ordinal encoding) are shown in 

this section. Next, the identified sets of hyperparameters are 

used to train the models for both branches and compared in 

terms of the validation AUROC. Lastly, this section also shows 

the performance differences between the existing and the 

modified CNN architecture in analyzing the same dataset and 

evaluated in the aspect of validation AUROC, accuracy, 

sensitivity, and specificity. 

 

A. Hyperparameter Tuning Result 

 

The results of the optimal value for each parameter are 

shown and the best combination of hyperparameters used for 

each model is compared according to the different 

preprocessing methods. The values of each parameter that give 

the highest AUROC mean and max value for each model based 

on different preprocessing methods are shown in Table I. 

 
TABLE I.  VALUES OF EACH PARAMETER THAT PRODUCES THE BEST MEAN 

AND MAX AUROC VALUE FOR BOTH PATTERN AND FREQUENCY MODEL 
 

Hyperparameter 
Pattern Model Frequency Model 

Mean Max Mean Max 

One-hot encoding method 

Filter size 10 8 7 7 

Layer size 1500 1500 1200 1000 

Dropout rate 0.1 0.1 0.1 0.1 

Learning rate 0.001 0.001 0.01 0.01 

Ordinal encoding method 

Filter size 14 8 7 7 

Layer size 1500 1200 1200 1200 

Dropout rate 0.1 0.1 0.5 0.5 

Learning rate 0.001 0.001 0.01 0.01 

 

In Table I, the column of “Mean” represents the set of 

hyperparameters that produces the highest mean AUROC for 

both models using both encoding methods. Similarly, the 

column of “Max” shows the set of hyperparameters values that 

produce highest AUROC. 

In the one-hot encoding method, the maximum AUROC of 

the Pattern model is reached with a filter size of 8, whereas the 

highest average AUROC is achieved with a filter size of 10. 

For the layer size, dropout rate, and learning rate, the highest 

mean, and highest max are achieved when the values are 1500, 

0.1, and 0.001 respectively. On the other hand, the values of 

the parameters that yield the highest mean and highest max for 

the Frequency branch are 7, 0.1, and 0.01 for filter size, 

dropout rate, and learning rate, respectively. While the highest 

AUROC is achieved when the layer size is 1000, the highest 

mean is achieved when the layer size is 1200.  

 For the ordinal encoding method, both the highest mean 

and max for filter size and layer size in Pattern Model are 

different, which are 14 and 8 for filter size, and 1500 and 1200 

for layer size. For the rest, the dropout rate and learning rate 

have the same values for the highest mean and max, which are 

0.1 and 0.001 respectively. Surprisingly, the values of the 

highest mean and max are consistent in all parameters: 7 for 

filter size, 1200 for layer size, 0.5 for dropout, rate, and 0.01 

for learning rate.   

Based on the results shown, the dropout rate of 0.1 works 

best in all models that used different preprocessing methods, 

except for the Frequency model applied ordinal encoding 

achieves the best performance when the dropout rate is 0.5. 

Learning rate can be said to be more consistent in similar CNN 

architecture, because in the Pattern model for both 

preprocessing methods, the learning rate of 0.001 works the 

best, while the optimal learning rate in the Frequency model 

for both preprocessing methods is 0.01. The filter size in the 

Frequency model for both preprocessing methods are having 

the same value which is 7 in both the highest mean and max. 
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B. Model Training Result 

 

From Table I, these sets of hyperparameters are further 

used to train corresponding models for 30 epochs with early 

stopping criteria if the AUROC does not improve for 6 

continuous epochs. The performances of each combination of 

hyperparameters based on AUROC for every model are 

displayed in Table II. 

The best combination for the Pattern model that applied 

the one-hot encoding method reached the best AUROC, 

0.9174 when filter size is 8, layer size is 1500, the dropout rate 

is 0.1 and learning rate is 0.001. While the filter size 7, layer 

size 1200, dropout rate 0.1 and learning rate 0.01 work best in 

the Frequency branch that applied the one-hot encoding 

method which achieved a higher AUROC (0.9261) than the 

Pattern model. On the other hand, the performances for the 

models that employed ordinal encoding is not ideal. The best 

performance for the Pattern model is 0.7737 with the 

combination of filter size 14, layer size 1500, dropout rate 0.1 

and learning rate 0.001. While the only combination for 

frequency model, 7 for filter size, 1200 for layer size, 0.5 

dropout rate and 0.01 for dropout rate obtained an even lower 

AUROC which is 0.6025.  

 

TABLE II.  AUROC OF EACH COMBINATION OF HYPERPARAMETER FOR PATTERN AND FREQUENCY BRANCH 

 

 

 

After building all the models, the best Pattern and 

Frequency models with tuned hyperparameters in each 

preprocessing method are utilized to generate the full model. 

The comparison of the performance of the full models 

generated is shown in Table III.  

 
TABLE III.  RESULT OF EACH MODEL WITH DIFFERENT ENCODED INPUTS  

 

Model 

AUROC 

Ordinal  

encoded input 

One-hot 

encoded input 

Pattern model 0.7737 0.9174 

Frequency model 0.6025 0.9261 

Full model 0.7782 0.9216 

 

 

Based on the results, the AUROC of pattern, frequency 

and full models that employed ordinal encoded input are less 

than 0.8, meanwhile the full model that employed one-hot 

encoded input obtains the highest AUROC which is more than 

0.9 in the three models. 

 

C. Convention CNN architecture vs new CNN architecture 

 

There are several sets of layer sizes used to determine 

which is the best for the Pattern and Frequency models that 

applied the new CNN architecture. After running each layer 

size set, the best layer sizes for the Pattern model are 256 for 

the first convolutional layer and 128 for the second 

convolutional layer which obtained 0.9174 AUROC. On the 

other hand, the best layer sizes set for the Frequency model are 

38 and 19 for first and second convolutional layers 

respectively. The AUROC of the optimal Frequency model is 

slightly higher than that of the Pattern model which is 0.9059. 

After identifying the best models in both Pattern and 

Frequency models, these models are then merged and built into 

the full model. The Full model greatly improved from the 

previous models which achieved highest AUROC which is 

0.9612. 

To identify the better CNN architecture, the comparison of 

the three models that applied different CNN architectures are 

shown in Table IV. Although the AUROC of Pattern model 

and the Frequency model that applied new CNN architecture is 

lower than that of the convention architecture, the Full model 

that applied new CNN architecture obtains the highest AUROC 

among all the models. 

 
TABLE IV.  RESULT OF EACH MODEL WITH DIFFERENT CNN 

ARCHITECTURES 
 

Model 

AUROC 

Existing 

architecture 

Modified 

architecture 

Pattern model 0.9174 0.9021 

Frequency model 0.9261 0.9059 

Full model 0.9216 0.9612 

 

 

The detailed data of each performance measurement which 

are the accuracy, sensitivity and specificity of Pattern, 

Frequency and Full models are displayed in Table V. 

Model 
Hyperparameter 

AUROC 
Filter size Layer size Dropout rate Learning rate 

One-hot encoding method 

Pattern model 
8 1500 0.1 0.001 0.9174 

10 1500 0.1 0.001 0.9035 

Frequency model 
7 1200 0.1 0.01 0.9261 

7 1000 0.1 0.01 0.9243 

Ordinal encoding method 

Pattern model 
14 1500 0.1 0.001 0.7737 

8 1200 0.1 0.001 0.7487 

Frequency model 7 1200 0.5 0.01 0.6025 
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TABLE V.  THE ACCURACY, SENSITIVITY AND SPECIFICITY OF PATTERN, 

FREQUENCY AND FULL MODELS WITH CONVENTION AND NEW CNN 

ARCHITECTURES 
 

CNN 

architecture 

Model 

Pattern 

Model 

Frequency 

Model 

Full 

Model 

Accuracy (%) 

Convention 97.56 97.77 98.10 

New 97.50 94.69 98.27 

Sensitivity (%) 

Convention 72.58 76.67 91.30 

New 93.55 38.94 90.20 

Specificity (%) 

Convention 99.04 99.21 99.77 

New 99.89 96.10 99.72 

 

 

From the data shown in Table V, the accuracy obtained 

from both CNN architectures for the 3 models are quite good 

with more than 90%. The accuracy of the full models is the 

highest in both convention and new CNN architecture among 

the three models. This indicates that the full model improves 

from the Pattern and Frequency models as it is the combination 

of these two models.  

Sensitivity is the ability of the models to correctly predict 

those DNA sequences that are viral. Based on the data, for 

conventional CNN architecture, the full model achieves the 

highest sensitivity (91.30%) among the models, while the 

pattern model reaches the highest sensitivity (93.55%) in the 

Pattern model among the models that applied new CNN 

architecture. High sensitivity is important in the predictive 

model as it can be used to identify the viral DNA sequences. 

High sensitivity means that the model can predict most of the 

viral sequences correctly while only a small portion is left 

undetected.   

The specificity among the three different models of both 

CNN architectures achieves a great value which all are more 

than 90%. The highest specificity for models that implemented 

convention and new CNN architectures fall on Full model 

(91.30%) and Pattern model (93.55%) respectively. Specificity 

refers to the ability of the models to precisely predict the non-

viral sequences. As all the models having 95% specificity and 

above, it indicates that the models correctly predict these 95% 

and above non-viral DNA sequences as non-viral, and only not 

more than 5% non-viral DNA sequences are incorrectly 

predicted as viral sequences which is also known as false 

positives. The model that has low sensitivity but high 

specificity such as the Frequency model that employed new 

CNN architecture, results in many DNA sequences that are 

viral being predicted as the non-viral sequences and are left out 

for further investigation. 

 

IV. DISSCUSSION 

 

From the result of hyperparameter tuning, each model has 

the different sets of hyperparameter combinations which 

demonstrates that different models employ different 

hyperparameter combinations to produce the best results, and 

that is why hyperparameter tuning is required in the 

experiment. The result also reveals that the one-hot encoding 

preprocessing approach for DNA sequences produced a better 

result than ordinal encoding. This shows the capability of one-

hot encoding to transform the raw DNA sequences into a more 

informative computer-readable format than ordinal encoding. 

This might be due to the one-hot encoding method converting 

each nucleotide base into a matrix form, whereas ordinal 

encoding only converts the nucleotide bases into different 

numerical numbers. It also proves that one-hot encoding is a 

more suitable preprocessing method for DNA sequences to be 

used in CNN architecture. Despite the fact that the ordinal 

encoding method creates a minimal dimension for the input 

data, the values provided to the nucleotide bases create a 

manual ordering of the input elements, which may bias the 

representation and, in turn, reduce the model's performance 

[22]. Furthermore, the new CNN model design produces 

superior results than the conventional CNN architecture. This 

means that when additional layers are added to the CNN 

design, more information is collected, and, as a consequence, 

better results are produced, despite the longer processing time. 

 

V. CONCLUSION 

 

Different models have different combinations of 

hyperparameters to achieve the highest performance for the 

CNN model in predicting viral sequences. Results from this 

study also shows that one-hot encoding is a more suitable 

preprocessing method for NGS data compared to ordinal 

encoding in CNN. Moreover, adding more layers to the CNN 

structure improves the performance of CNN models to detect 

the viral sequences. This study investigated the potential of 

CNN in analysis of NGS data for viral sequence detection. 

However, it does not cover all possibilities that can be further 

explored. 

The recommendation for future work is to increase the 

sample size. In this study, only 18,455 of the DNA sequences 

are extracted and used in the experiment from the total 264,029 

samples due to the time constraint. When the number of 

samples rises, the accuracy of the model also increases. The 

application of different DNA sequences length can also be 

another suggestion for future work. In this study, all the DNA 

sequences used are the length 300. Other sequence lengths can 

also be used if the computational resources are allowed. 

Meanwhile, implementation of different optimizer such as 

stochastic gradient descent (SGD), Adagrad and others that 

might further improve the performance.  
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