
International Journal of Innovative Computing 13(1) 83-88

83

Enhancing the Developer Experience (DX) in Docker

Supported Projects

Masitah Ghazali*

Malaysia – Japan International Institute of Technology

(MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya

Petra,54100 Kuala Lumpur, Malaysia

Email: masitah@utm.my

Alfian Naufal Ravi Hidayat

Faculty of Computing

Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, johor, Malaysia

Email: naufalravi@graduate.utm.my

Submitted: 13/11/2022. Revised edition: 15/2/2023. Accepted: 15/2/2023. Published online: 30/5/2023
DOI: https://doi.org10.11113/ijic.v13n1.393

Abstract—Docker is undeniably powerful and revolutionary in

how containerized system development is developed today, but it

is apparent that the learning curve for it should be addressed, as

it typically is complex at times, especially for beginners. One of

the fundamental tasks in a Docker workflow is Dockerfile

configurations, which at times require ample time to study and

observe for attaining the best practices, even the appropriate

result. This issue undeniably affects the developer experience.

Developer Experience (DX), being a derived field from User

Experience (UX) that has been getting traction for the past few

years concerns developers’ innate ability to perceive tasks as

enjoyable, painful, or perhaps some other sets of emotions. The

goal of DX is to evaluate all those factors in order to improve the

software development experience, which consequently affects

how the project is delivered. In resonance with that, this work

aims to enhance the DX by way of proposing and incorporating

supporting interaction tools, both based on CLI and GUI as the

interface type, with two different permutations: CLI and GUI.

The DX of both has to be evaluated by the experts, who are of

experienced developers, regardless of whether they have the

knowledge of Docker or not. The method to test and evaluate two

different solutions is conducted qualitatively, with each

respondent had a different order of evaluating the two solutions.

The qualitative data is thematically analyzed, resulting in GUI

being the best option among the two. The contribution of this

research is the design guidelines for GUI and CLI-based tools

development that enhance the Developer Experience (DX) in the

scaffolding of Dockerfile and docker-compose.yml for projects

that use Docker.

Keyword—Developer Experience, Docker, Command-line

Interface, Graphical User Interface, Qualitative Analysis

I. INTRODUCTION

Containerization is a state of the art of development, and

Docker is one of the most popular solutions. It solves

dependency management issues, conflicts between local

environments, and resources being utilized, which in

consequence, makes deployment and collaborative

development less problematic. The way it is configured is in

two ways, one is by defining the Dockerfile, which is typically

used to assemble a single image, and the second is the docker-

compose.yml, where both single and multi-interconnected-

containers are meant to be configured. The fact that an ample

amount of time is required to learn to start configuring

containers from scratch, especially with docker-compose is

undeniable. There are also concerns regarding implementing

one approach over the other, which could result in unforeseen

implications, such as security, for instance. This often raises

concern about developer experience (DX), as consequence,

frustration increases among developers and students, which is

not a sign of good developer experience [1].

We aim to understand the developers experience as they

use the Docker application. The primary objective of this study

is to evaluate the effectiveness of the interaction techniques

and identify the one that works best for the developer

experience (DX) on the current Docker files configuration.

Section II discusses the existing research on DX, Docker, CLI,

and GUI. Section III Discusses the method that this study shall

follow, and Section IV describes the Proposed Guidelines and

User Design Setup. Section V is Results and Analysis, and

finally, Section VI is Conclusion.

Masitah Ghazali & Alfian Naufal Ravi Hidayat / IJIC Vol. 13 No. 1 (2023) 83-88

84

II. RELATED WORK

A. Developer Experience (DX)

DX is a relatively new field, as the oldest and the pioneer of

research about it, Fagerholm [2] describes the need to create a

new terminology specific for developers, which subsequently

creates a new research field concerned with enhancing

developers’ software development process efficiency

concerning their inherent emotions. The direction of

Fagerholm [2] and the idea of creating a terminology can

clearly be seen, as it emphasizes the notion of making the

developers and their inherent emotions being the main focus

and study subject, as the literature also mentions that there are

numerous productivity factors, which most of them being non-

technical. The literature describes alternative ways to perceive

DX, which could be done by breaking down each word, but

ultimately it all comes down to user experience and

psychology, two domains that are interrelated. UX, being the

influence of DX itself is quite new, being under the domain of

HCI, having the characteristics of dynamic, context-dependent,

and subjective [3].

B. DX and Psychology

Intellect, or cognition, is a part of one of the oldest models

in cognitive psychology, the tripartite classification of mental

activities, cognition, affection, and conation [4]. Although

there are disagreements and whatnot prior to the literature

being published, Hilgard put a lot of emphasis on the

prominence of such a model for the assessment of

contemporary emphases in psychology. As for the case of DX,

the scheme of tripartite of mind could support the argument

that emotions and cognition are then turned into intentional

actions being done during the software development process

[2].

C. Containers and Docker

Containerization is a way to create virtualization at the OS

level, which means the containers are using the same OS as the

machine, in a way, operating on top of it [5]. This way, it offers

isolation of the filesystem, while having its own resources

shared by the host OS, hence the term containers.

While Docker and the term containerization have been

popular lately, the first pervasively-used container is LXC, or

Linux Containers [6]. LXC allocates resources as necessary

using Cgroups. Cgroups or Control Groups are resource

controllers for processes that reside in an operating system,

initiated by Google in 2007, and proceeded to be implemented

in the main Linux kernel in 2008 [7]. Each container within

LXC has its own kernel, which is shared with the host OS,

making the processes accessible to it [6].

Docker offers extensive features to LXC, having features

that LXC has while having more kernel and application-based

features in order to make data management possible on top of

the host OS [6]. Docker containers are the result of the

blueprint created in the shape of Docker Images. Images could

be an OS, like Linux, a Database Management System

(DBMS), or any complex applications or platforms that are

already bootstrapped in terms of configuration and all the

complex bits, which makes them ready to be utilized instantly

[5].

D. Interface and Interaction Types

As history goes, CLI was conceived first, as a way to

communicate with computers by imperative commands in

natural language. As the system grew, more commands were

introduced, hence more effort was needed to memorize, hence

GUI is there as an alternative to serve as an abstraction by

visualizing steps that the command would reproduce by

selecting sequences of objects that describe such [8]. GUI

exists as an alternative to the conventional way to interact with

computers at that time, through a blank screen with a prompt,

where the user could enter commands that are already pre-

defined [9]. At that time, the term GUI itself had no exact

meaning, as studies were limited. There were multiple terms

being brought out, namely by Harding [10] and Bonsiepe [11],

where both are associating GUI with the looks or visualization

of the computer system and its interactions.

III. METHOD

There are four phases in the research workflow, the first

being requirements gathering, followed by requirements

specification, then prototype design, and finally evaluation.

The whole workflow is not meant to be linear, as the last two

are done iteratively. Fig. 1 shows the research workflow, with

the leftmost being the first phase, incrementing to the right, up

to four, that denotes successive processes.

Fig. 1. Research workflow

A. Phase 1: Acquiring Information

The first phase is Acquiring Information, where past

research or any relevant literature is reviewed in order to

collect data and foundational information on topics namely

Masitah Ghazali & Alfian Naufal Ravi Hidayat / IJIC Vol. 13 No. 1 (2023) 83-88

85

UX, DX, interface types, and containerization, which leads up

to Docker. Apart from that, a questionnaire of 19 questions is

formulated in order to elicit sentiments, enjoyments, and pain

points that developers and students alike would get when

working with Docker, especially its ultimate task, images

configuration, while also touching upon the same points with

interface types, and overall sentiment on supporting tools. This

aligns with the first objective, which is to study the developer

experience with the current Docker files configuration, and the

relevant interaction techniques.

B. Phase 2: Design Proposal

The following phase is the Design Proposal, where data

analysis is done based on the data collected from the

questionnaire in the previous phase. It is done through

qualitative analysis, of a grouping of answers that could lay the

basis for prototype designing, by proposing the most

appropriate solution based on actual users’ feedback. This

helps satisfy the second objective, which is to propose two

interaction techniques to enhance the DX in Docker-supported

projects.

C. Phase 3: Prototype Design

Next is Prototype Designing, where the activity is as it

suggests, design prototypes, which are for two different

interface types, CLI and GUI based on the data gathered in the

first phase and analyzed in the second. Prototype designing is

done iteratively, as evaluation from developers is required as

Kuusinen [12] suggests, to achieve the most fitting DX for a

particular software or in this context, the tools that are being

proposed in order to enhance the DX of Docker-supported

projects. To achieve this, co-designing sessions are conducted.

D. Phase 4: Identifying the Most Suitable Technique

The last phase is to identify the most suitable technique. An

experiment will be conducted by recruiting the same

participants in the second phase. In other words, the test is

done in-between subjects. The evaluation itself is going to be

done right after an initial working version of the system is

ready. This goes along with Kuusinen’s suggestion [12], as in

the 2016 study, the process was well-liked. A concern

regarding bias on the part of evaluators, by preferring the last

testing object just because of a particular order, arises, but this

could be minimized by dividing the participants into three

separate groups, with different orders. From there on, the third

objective could be achieved, which is to evaluate the

effectiveness of the interaction techniques and identify the one

that works best for the developer experience (DX) on the

current Docker files configuration.

IV. ANALYSIS AND PROPOSED IMPROVED DESIGNS

A. Insights

Respondents were invited to participate in a survey, where

some insights were learned about their experiences while using

the Docker application, the challenges they often face, and

their views and feedbacks, both positively and negatively on

the styles of interfaces, particularly the graphical user interface

(GUI) and the command line interface (CLI). A total of 19

respondents took part in the survey and their responses are as

shown in Table I, II and III.

TABLE I. ENJOYMENT WHILE USING DOCKER

Docker’s Factual

Advantages

Existing External

Supporting Elements

Docker Inherent

Tasks

• The ability to

create a

reproducible
development

environment

• Familiarity with

Linus, hence

Docker

environment

configuration

made easy

• Human readable

and works out of
the box

• Easy and

lightweight to

setup

• Seamless multi-

platform

integration with

the same
configuration

• Docker

documentation

• Resources and

documentation

provided by
Docker

community

• Community

support, tooling,

and bootstrapped
complex

configuration

• Define

multiple
images, and

networking for

connecting all
those images

• Configuring

existing
images and

exposing ports

• Configuring a

new container

• Creating and

adding

commands to
Dockerfile

• Configuring

container’s
name

TABLE II. CHALLENGES WHILE USING DOCKER

Learning Curve Docker Inherent Tasks

• First time adopting Docker

• There should be a one-click

setup analogous to NodeJS

that offers an easier

installation method

• The need for a debugger

and autocompletion for

Dockerfile and docker-
compose

• Connecting backend and

DB containers

• Configuring default

parameter for mountable
drive for example, since

knowing the arguments are

necessary

• When working with

multiple images

• Configuring volumes,

custom Docker images
environmental Docker files

such as docker-

compose.local

• Image size and permission-

related issue

• No support for VM

• Unrestricted access of

processes and files

• Configuration format and

all available options that

could reduce security holes

Masitah Ghazali & Alfian Naufal Ravi Hidayat / IJIC Vol. 13 No. 1 (2023) 83-88

86

TABLE III. FEEDBACK ON CURRENT INTERFACE TYPES

Positive

Command Line Interface (CLI) Graphical User Interface (GUI)

• Lightweight

• Efficient and able to be

automated

• Reduced context-switching

• Dynamic

• Straightforward

• Commands and arguments are

able to be combined, then

executed as a script

• Tends to be user-friendly

• More intuitive and

interactive

• Errors recognition is easier

• Feedback is visual, hence

recognized faster compared

to text

• Shortcuts option

Negative

Command Line Interface (CLI) Graphical User Interface (GUI)

• Hard to navigate while dealing

with dynamic data

• Limited visualization

• Remembering all options and

arguments are required

• Steeper learning curve

• Obscure error codes that

require searching online

• Knowing available

configurations is required

• Verbose commands

• Inconsistent commands

• Lack of flexibility

• Automation is difficult

compared to CLI

• GUI is cluttered or easy to

be disorganized most of the

time

• Process, memory and

storage demanding

• Too many GUI features

could also translate to

distraction and requires
learning

• Obscure representation of

objects in GUI

Based on the data gathered, most of the respondents are

inclined towards the usage of CLI, though it is evident that

GUI also shares quite a fair number of likings. In addition, the

documentation, being a rudimentary part of a system, as the

questionnaire result suggests for a web-hosted is preferred as

the medium of accessing it. Therefore, in enhancing the DX,

the improved design for both CLI and GUI interface types are

based on the findings from the literature review, questionnaire

answers, and co-designing sessions.

B. Proposed Design

1) Command Line Interface

The solution is designed for flexibility, as CLI-based tools

require commands to perform certain tasks, which are operable

through the terminal. Through it, the user would be able to

enter commands that could create default configurations for

Dockerfile or docker-compose. For example, entering

“MySQL”, “PHP-FPM”, and “Redis” would generate a

docker-compose file that has configurations that the

documentation for each image would recommend. Some

typical ones are port numbers, and volumes, which sometimes

could hinder one’s development speed, especially for

beginners, as learning is required. The goal is to abstract what

to configure and modify. Documentation is definitely required,

therefore adding information on what a particular command

does, or perhaps what arguments and flags should be passed

could be accessed through its manual or help page. The

proposed and improved working CLI is made in Golang, which

the binary then will be distributable.

2) Command Line Interface

The GUI-based solution serves as a bootstrapped

Dockerfile and docker-compose configuration, similar to what

CLI can do, but is done through a web application that offers

click and select options, which results in a downloadable file.

From there on, modification is done without help, as it only

serves as a one-time abstraction.

Figma is used to create the working GUI interactive

prototype. Previously, the mockups or the rough sketches were

built based on the survey findings, as well from the design

decisions that were made solely based on the use cases. Fig. 2

shows the initial design of the Dockerfile Configuration.

Fig. 2. Initial GUI design of Dockerfile Configuration

It is imperative to obtain initial feedback from the targeted

potential users; developers and Dockers users alike, on the

suggested improved GUI design. For that, co-designing is

chosen to be a way to transform user’s feedback into a product

that shall be beneficial to the targeted users. In fact, co-

designing promotes better creative process during the design,

while also making service definition clearer. Not only that, it

also provides satisfaction from the user’s side, while also

fitting what the user really requires [13]. In this process, two

individuals with different roles and experiences (see Table IV)

volunteered to provide feedback and insights on the initial

design, where they helped in improving the design together.

TABLE IV. ROLES AND EXPERIENCE OF THE CO-DESIGNERS

 P1 P2

Role
Site Reliability

Engineer

Student (exposed

and experienced as

DevOps engineer)

Experience in using

Docker application

Using it in production,

intermediate to
advanced level

Familiar

Masitah Ghazali & Alfian Naufal Ravi Hidayat / IJIC Vol. 13 No. 1 (2023) 83-88

87

V. COMPARISON STUDY

The proposed and improved interface types; the CLI and

the GUI, as previously described are then compared to identify

the most suitable type that could enhance the developer

experience (DX) in the Docker related application. A

comparison study is designed in such a way that the

participants can experience both types to test which is most

comfortable to them.

Five participants involved in this study. They were first

briefed about the project and its aim, and were asked to

complete a consent form. Once they are comfortable, XX tasks

were handed out to them to accomplish at their own. All

participants used their own personal computer in either a

UNIX-based environment, or Windows subsystem for Linux.

This study is a within-subject study where all five of them

tested both conditions, i.e. both interface types. In order to

reduce the order effect, counter balancing was performed,

where two of them started with GUI, and the other with CLI,

and vice versa. The three tasks, described below, were the

same for both conditions.

• Task 1: Complete the sign up and sign in

• Task 2: Configure a Dockerfile of image node, with

the entrypoint of app.js, env variable of

NODE_ENV=production

• Task 3: Configure a docker-compose of stack MERN,

set the project name to “my-beautiful-project”, set

node:latest as the tag, and index.js as the entrypoint.

The environment variable for node should be

NODE_ENV=development, and for mongo:

username: root

password: extrasecret

While performing the tasks, the participants were

encouraged to think aloud in order to know their thought

process. Their behaviour was also being observed throughout

the session. At the end of the session, the participants were

interviewed guided by the following four questions.

• What was difficult?

• What motivated you to use both the CLI and GUI?

• What could be your biggest concern with the CLI-

based tool? And what about the GUI-based?

• What do you think about the learning curve of the

GUI-based, and the CLI-based?

•

VI. RESULTS

The findings from the tasks accomplishment, observations

and the interview were compiled and analysed. All participants

managed to do all tasks assigned in both conditions.

With regards to the questions posed during the interview,

interesting enough, all participants find the CLI type to be the

most challenging. Participant P3 even quoted, “I needed just a

little bit of docs of what it was expecting. It was great, and I

tried -h flags …. and after a while, it was much easier to

create”. Noting that the documentation provided for the root

command was minimal, making all participants to explore on

their own. The lack of documentation in that aspect that made

all participants starting out using the tool to feel difficult while

using seems to be true, since the rest, which was well-

documented was a smooth sailing experience, especially for

task number 3. Apart from that, an interesting remark that P1

said, “There are too many flags, but yet they are compulsory to

use. Are they not supposed to be commands if they are must to

have? Regardless, there are so much to write, and it took too

long”. P3 also had the same idea when it comes to the

command required to run is too long.

There were no complains about the GUI, as all participants

unanimously liked the straightforwardness and how easy it was

for first time users. Though P5 let out a concern, “I feel like the

GUI is straightforward, but there are some cases where I had

to type in a long text just to pass an argument. Would not that

be nice if there are some assistive components that could make

it faster and easier.”

The second question was mainly answered in a way,

appreciating the tools that could be used to make Dockerfile

and docker-compose.yml configuration simpler, but yet, they

appreciated the GUI more, as it did make everyone felt easier

to get used to, faster to use, and efficient in terms of task

completion. Although the GUI has no documentation at all, but

the UI components and the placeholders could show what the

system is expecting, which everyone agreed. P3 quoted, “The

placeholder made it more clear to what the GUI-based tool

should be expecting”. P4 said, “GUI is straightforward and

predictable, so the user knows what the possible usage are.

Also, transitioning from CLI to GUI was not difficult.”.

When asked about the biggest concern that they had on

both interface types, CLI had the most critics, where the

participants saw the issue in different ways than one:

portability, efficiency, lack of documentation, and design.

Design was only mentioned by P1, where the concern was

mainly on the design decisions, using flags rather than sub-

commands. But portability, efficiency, and the lack of

documentation was the common theme. Portability was

mentioned by P1, P2, and P5, where the issue was not having

CLI installation to be seamless, requiring the right OS and a set

of additional steps such as changing the file permission to be

executable. P1 and P5 mentioned about the necessity of

onboarding, but P1 also said, “This seems to be demotivating

as there are extra steps required to run the CLI. Most of the

time, using such tools should be a one-off, hence making it a bit

inefficient considering the effort to install.”

Lastly, on the last question, all participants are also

concerned about the steep learning curve of the CLI. P4

mentioned, “I prefer CLI personally, but the lack of

documentation thereof makes me second-guess commands and

flags.” As the opposite, GUI won the favor of everyone in

terms of the learning curve, where P5 said, “... GUI only

requires interaction with the UI components, as for example

opening the dropdowns to see the options, while the CLI

requires consultation to the documentation.”

Based on the feedback attained from the interviews, we are

able to further analyse them into themes. This is shown in

Table V.

Masitah Ghazali & Alfian Naufal Ravi Hidayat / IJIC Vol. 13 No. 1 (2023) 83-88

88

TABLE V. IDENTIFIED THEMES

Main Theme Sub-themes

Inherent feelings

when facing
difficulties using

either interface type

• Positive inherent feelings when not facing

any difficulties when using GUI

• Negative inherent feelings when using

CLI

Inherent feelings

regarding the

motivation of using
both types

• Positive inherent feelings when using GUI

• Negative inherent feelings when using

CLI

Inherent feelings

regarding sentiment
on both types

• Positive inherent feelings regarding the

sentiment of GUI

• Negative inherent feelings on the

sentiment of CLI

Inherent feelings
regarding the

learning curve of

both

• Positive inherent feelings regarding the

learning curve of GUI

• Negative inherent feelings regarding the

learning curve of GUI

It could be inferred that the users prefer GUI over CLI,

even the results of the feedback of the former eclipses the

latter. Though to note, the negative feelings are not utterly

unanimous for CLI, but the number still lopsided. It can be

inferred that GUI is more preferred to be chosen as the

interface type for bootstrapping Dockerfile and docker-

compose configuration, but there are elements that CLI could

improve, namely in terms of the design, portability, and

documentation.

VII. CONCLUSION

It could be inferred that the users prefer GUI over CLI,

even the results of the feedback of the former eclipses the

latter. Though to note, the negative feelings are not utterly

unanimous for CLI, but the number still lopsided. It can be

inferred that GUI is more preferred to be chosen as the

interface type for bootstrapping Dockerfile and docker-

compose configuration, but there are elements that CLI could

improve, namely in terms of the design, portability, and

documentation. Future works could be in the form replicating

the study to reach more developers while also improving the

prototypes, in terms of the interactiveness, meaning that using

a proper language and practices for writing a web application

instead of a interactive design, and also proper documentation

and user friendliness, since when it comes to CLI, the issues

was mainly regarding the documentation, portability, and the

design. Perhaps studies in the future should add better

documentation, offers scripting or any other way to make

installing and building in multiple OSs easier, and using the

best practices for writing a CLI, in terms of the design.

ACKNOWLEDGMENT

We would like to thank the volunteers in the study, for their

involvement as participants, co-designers and testers.

REFERENCES

[1] B. Reselman. (2020). Developer experience: An essential

aspect of enterprise architecture. In Enable Architect. Retrieved

July 27, 2022, from

https://www.redhat.com/architect/developer-experience.

[2] F. Fagerholm, and J. Munch. (2012). Developer experience:

Concept and definition. International Conference on Software

and System Process (ICSSP).

https://doi.org/10.1109/icssp.2012.6225984.

[3] E. L.-C. Law, V. Roto, M. Hassenzahl, A. P. O. S. Vermeeren,

and J. Kort. (2009). Understanding, scoping and defining user

experience. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems.

https://doi.org/10.1145/1518701.1518813.

[4] E. R. Hilgard. (1980). The trilogy of Mind: Cognition,

affection, and Conation. Journal of the History of the

Behavioral Sciences, 16(2), 107-117.

https://doi.org/10.1002/1520-6696(198004)16:2<107:aid-jhbs2

300160202>3.0.co;2-y.

[5] D. Bernstein. (2014). Containers and cloud: From LXC to

Docker to Kubernetes. IEEE Cloud Computing, 1(3), 81-84.

https://doi.org/10.1109/mcc.2014.51.

[6] A. Kovacs. (2017). Comparison of different Linux containers.

40th International Conference on Telecommunications and

Signal Processing (TSP).

https://doi.org/10.1109/tsp.2017.8075934.

[7] S. S. Kumaran. (2017). Introduction to Linux Containers. In:

Practical LXC and LXD. Apress, Berkeley, CA.

https://doi.org/10.1007/978-1-4842-3024-4_1.

[8] D. Norman. (2007). The next UI breakthrough: command lines.

 Interactions, 14(3), 44-45

[9] B. J. Jansen. (1998). The graphical user interface. ACM

SIGCHI Bulletin, 30(2), 22–26.

https://doi.org/10.1145/279044.279051.

[10] B. A. Harding. (1989). Windows & Icons & Mice, Oh My! The

Changing Face of Computing. Frontiers in Education

Conference 1989:19 th Annual. 337-342.

[11] G. Bonsiepe. (1993). Interpretations of Human User Interface.

Visible Language, 24(3), 262-285.

[12] K. Kuusinen. (2016). Are software developers just users of

development tools? assessing developer experience of a

graphical user interface designer. Lecture Notes in Computer

Science, 2016, 215-233. https://doi.org/10.1007/978-3-319-

44902-9_14.

[13] M. Steen, M. Manschot, and N. De Koning. (2011). Benefits of

co-design in service design projects. International Journal of

Design, 5(2), 53-60.

