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Abstract—This paper proposes a compartmental Susceptible-

Exposed-Infected-Recovered-Death (SEIRD) model for COVID-

19 cases in Malaysia. This extended model is more relevant to 

describe the disease transmission than the SIRD model since the 

exposed (E) compartment represents individuals in the disease's 

incubation period. The mathematical model is a system of 

ordinary differential equations (ODEs) with time-varying 

coefficients as opposed to the conventional model with constant 

coefficients. This time dependency treatment is necessary as the 

epidemiological parameters such as infection rate β, recovery rate 

γ, and death rate μ usually change over time. However, this feature 

leads to an increasing number of unknowns needed to be solved to 

fit the model with the actual data. Several optimization algorithms 

under Python’s LMfit package, such as Levenberg-Marquardt, 

Nelder-Mead, Trust-Region Reflective and Sequential Linear 

Squares Programming; are employed to estimate the related 

parameters, in such that the numerical solution of the ODEs will 

fit the data with the slightest error. Nelder-Mead outperforms the 

other optimization algorithm with the least error. Qualitatively, 

the result shows that the proportion of the quarantine rule-abiding 

population should be maintained up to 90% to ensure Malaysia 

successfully reaches disease-free or endemic equilibrium. 

 

Keywords—SEIRD model, COVID-19, simulation, optimization, 

Malaysia  

 

I. INTRODUCTION 

 

The coronavirus disease 2019 (COVID-19) has been battled 

by people worldwide ever since it was first discovered on 31 

December 2019 in Wuhan, China. It is an infectious disease 

caused by SARS-CoV-2, a coronavirus with the possibility of 

causing fatal respiratory infections in people [1] and transmitting 

through droplets and airborne particles [2]. Three COVID-19 

waves have so far had an impact on Malaysia. Since then, 

epidemiological modeling of COVID-19 spread via 

compartmental models is crucial and becoming a powerful tool 

for outbreak prevention and control.  

Epidemiological modeling is a mathematical description of 

how an infectious disease will spread in a population [3]. Such 

models may forecast the future growth of COVID-19 

transmission dynamics via the prediction of the daily number of 

infected (I) active cases, peak infected (I) cases and duration of 

an epidemic for a particular wave [4]. Various fundamental 

traditional compartmental models of infectious disease with 

constant coefficients, including the SIR model, the SIRD model, 

and the SEIR model, were created. Such models have their roots 

in research by Kermack & McKendrick [5], who looked at the 

prevalence and distribution of infectious disease cases as they 

spread across a population over time. 

The SIR model is one of the simplest mathematical models. 

It divides the population into three groups which are susceptible 

(S), infected (I), and removed (R). The SIR model is applied by 

Beckley et al. [6] to predict the transmission trend of COVID-

19 and Abuhasel et al. [7] has studied the effectiveness of 

government intervention. SIRD and SEIR are the extended 

models of the fundamental classical SIR model. The SIRD 

model is an extension of SIR that divides the removed 

compartment into two compartments: one for recovery (R) and 

the other for death (D). This model enables the government to 

know the exact predicted number of each case. Besides, a new 

compartment E representing the exposed (E) individuals in the 

incubation period is added to the SEIR model, which is a more 

advanced model to examine the transmission of infectious 

diseases precisely which has been proposed by Mahmud & Lim 

[8] and Gupta et al. [9]. However, the D compartment is absent 

from this model. 
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Infectious diseases commonly have an incubation phase once 

the individuals get exposed to the virus. The incubation period 

is between a person's initial exposure to a pathogen and the onset 

of the infection's first symptoms [10]. This delay is crucial to be 

incorporated within the epidemiological model by adding an 

exposed (E) compartment which may mimic the actual 

progression of infected (I) individuals, who progress in sequence 

from S to E, then E to I. 

The SEIRD model, which is the extended model of SEIR and 

SIRD, is more reliable to be applied in modelling COVID-19 

transmission dynamics as studied by Muka & Sannyal [11], 

Piccolomiini & Zama [12] and Maugeri et al. [13] in their 

studies. These studies adopted the conventional SEIRD model 

with constant coefficients as they all assume stationarity of 

epidemiological parameters throughout the simulation. The 

constant coefficient may be employed during the early stages of 

an outbreak and with simulations that take place over a shorter 

time window, but not for the current scenario, which values 

longer predictions when analyzing the COVID-19 transmission 

trend. Time-varying coefficients must be employed in the 

mathematical model as the epidemiological parameters such as 

infection rate β, recovery rate γ, and death rate μ usually change 

over time. However, this time dependency treatment leads to an 

increasing number of unknowns needed to be solved to fit the 

model with the actual data of COVID-19 cases. 

Thus, this study's primary purpose is to fit the time-varying 

coefficients SEIRD model to actual COVID-19 cases in 

Malaysia using optimization algorithms. In this paper, we first 

(1) present our proposed SEIRD model formulation under the 

Methodology section. It is subsequently followed by the 

Findings and Discussion section (2), which is divided into two 

subsections i) optimization algorithm performance of four 

different algorithms (Levenberg-Marquardt, Nelder-Mead, 

Trust-Region Reflective and Sequential Linear Squares 

Programming) (ii) simulation of COVID-19 cases with 

optimized parameters which shows the effects of population 

behavior by the value of r, proportion of quarantine rule-abiding 

population. We summarized our findings in this paper's 

Conclusion part (3). These findings may give insight into the 

effectiveness of Malaysia’s government health policy in 

countering the outbreak in 2020 and raise public awareness of 

the importance of following the rules and standard operating 

procedures (SOPs) in preventing COVID-19 spread. 

 

II. METHODOLOGY 

 

In this section, we propose our modified SEIRD model. This 

section will be divided into four subsections i) study area and 

epidemic data, ii) mathematical model formulation, iii) research 

design, and iv) input data and initial values. The subsections are 

presented accordingly. 

 

A. Study Area and Epidemic Data 

 

Since this study is a simulation of general COVID-19 cases 

in Malaysia, daily data of COVID-19 infected (I), recovered (R), 

and death (D) cases from the first wave to the beginning of the 

third wave (from 25 January 2020 to 18 September 2020) are 

gathered from the Ministry of Health Malaysia (MOH) official 

data [14]. The COVID-19 data were available to the public on 

the Ministry's GitHub page. Before importing the data into 

Pandas DataFrame for the purpose of Python simulation, the 

data is gathered and sorted in a spreadsheet file. Data on the daily 

active infected (I), total recovered (R), and total death (D) are 

utilized to simulate the SEIRD model. 

 

B. Mathematical Model Formulation 

 

Several assumptions have been made to model the reliable 

transmission dynamics of COVID-19 due to the limited 

availability of several data. The assumptions are as follows: 

1. Malaysian population was a closed population due to 

the implementation of the international travel restriction 

enforced on 25 January 2020, which limits the 

movement of traveling foreigners into Malaysia. 

2. There has yet to be an immunization for SARS-CoV-2 

since the period of this study is before the immunization 

program starts. Thus, the Malaysian population is 

susceptible to COVID-19. 

3. It is assumed that the Malaysian population was 

constant during the relatively short time span of the 

model simulation. The natural death and newborn were 

not counted in, which is not realistic, however 

considering that a person's lifetime is much longer than 

the disease's outstanding phase, the number is 

insignificant. 

4. There was a chance for the recovered (R) population to 

be reinfected again. 

5. The sporadic case is now considered where we assume 

the disease can also be probably spread by an exposed 

(E) individual.  

6. The epidemiological parameters except the incubation 

rate are non-stationary. 

 

The schematic design in Fig. 1 shows how the populations 

in each compartment progress in sequence with a particular 

transition rate that accommodates reinfection incidences while 

considering the assumptions mentioned before. Based on the 

figure, the chocolate dashed-dotted curve represents the 

interaction or contact between everyone in the indicated 

compartments. In contrast, the black line arrow and black arrow 

curved down to show how the population progress in sequence 

from one compartment to another subsequent compartment with 

specific probabilities. 

 
 

Fig. 1. Schematic diagram of disease progression 
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By following the assumptions, the modified SEIRD model 

proposed by Jamil et al. [15] that considers reinfection cases and 

the modified SEIRD model proposed by Muka & Sannyal [11] 

that considers sporadic cases which highlighted two types of 

infection rates can be used for constructing a new form of a 

modified model in this study. This paper proposes a modified 

SEIRD model with some modifications considering sporadic 

cases, reinfection cases, and the non-stationarity of 

epidemiological parameters simultaneously. As depicted in Fig. 

1, this non-spatial model consists of five population 

compartments which is mathematically translated into a system 

of non-linear first order ordinary differential equations (ODEs) 

given by Eq. (1) – Eq. (5). Additionally, Eq. (6) represents the 

assumption that the total population is a constant, denoted by N. 
 

dS

dt
 = −

βI(t)SI

N
−

βE(t)SE

N
+ δ(t)R (1) 

dE

dt
=

βI(t)SI

N
+

βE(t)SE

N
− σE (2) 

dI

dt
 = σE − γ(t)I-μ(t)I (3) 

dR 

dt
= γ(t)I − δ(t)R (4) 

dD

dt
= μ(t)I (5) 

N =S(t) +E(t) + I(t) + R(t) + D(t) (6) 

 

This study adopts time-varying coefficients of the SEIRD 

model in predicting COVID-19 cases in Malaysia. In our 

proposed SEIRD model, we highlight six critical 

epidemiological parameters. It is because they may provide 

insights into the actual phenomenon that make it easier for 

policymakers to make informed decisions on the approach to 

contain the COVID-19 pandemic. The parameters include 

infection rate βI (contact with I), infection rate βE (contact with 

E), incubation rate σ, recovery rate γ, death rate μ, and 

reinfection rate δ. 

In general, those parameters are the rates of individual 

changes in their state from one to another. Infection rate βI is the 

probability of transmitting disease between susceptible (S) and 

infected (I) individuals, which then will progress the susceptible 

(S) individuals to the exposed (E) compartment. Generally,  

β = R0γ, where R0 is the basic reproduction number [16][17]. 

Meanwhile, infection rate βE is the probability of transmitting 

disease between the susceptible (S) and infected (I) compartment. 

Incubation rate σ is the probability of latent individuals who 

have close contact with the infected (I) or exposed (E) 

population becoming infectious in the incubation period, which 

then will progress the exposed (E) population to the infected (I) 

population once the incubation period ends. Traditionally,  

σ = 1/Tc, where Tc is the average latency duration [18].  

In addition, recovery rate γ is the probability of the infected 

(I) population becoming resistant and recovering from COVID-

19, which will progress the population to the recovered (R) 

compartment, where traditionally γ = 1/(Ti) with Ti as the 

average of recovery duration [1] which is also known as 

infectious period [19]. Traditionally, death rate μ may be 

determined by using the formula of μ = D/N over a certain period, 

where D refers to the cumulative death up to a certain date, and 

N refers to the total population in the country. Moreover, 

reinfection rate δ can be easily calculated using the simple 

formula of δ=Re/I, where Re is the number of reinfected 

individuals. Malhotra [20] highlighted that fully vaccinated 

healthcare workers in India had a lower risk of reinfection than 

unvaccinated and partially vaccinated with a percentage of 1.6%, 

12.7% and 11%, respectively. Since our epidemic data are from 

the first wave to the early third wave, only before reinfection 

cases and immunization emergence, the value of reinfection rate 

δ throughout the simulation of COVID-19 cases in Malaysia is 

indeed zero. 

Since in our model, the epidemiological parameters, 

especially infection rate β, recovery rate γ and death rate μ are 

functions of time, so now it is important to determine what type 

of functions should be employed. Inspired by SIRD model of 

Jamil et al. [15], time-varying infection rate βI(t), recovery rate 

γ(t) and death rate μ(t) are formulated as piecewise functions, as 

in Eq. (7) – Eq. (10). While for the infection rate βE(t), it is based 

on the SEIRD model of Muka & Sannyal [11], where they 

considered βE = 5βI, based on COVID-19 cases in China. In 

general, one can assume βE(t) = pβI(t) where p ≥ 1 and therefore 

βE(t) is defined as Eq. (8). Time interval of these piecewise 

function was divided into three phases as follows: 
 

• Phase I: Before Movement Control Order (MCO),  

t < tlock (27/2/20-17/3/20) 

• Phase II: During Movement Control Order (MCO) and 

Conditional Movement Control Order (CMCO),  

tlock ≤ t <  tlift  (18/3/20-9/6/20) 

• Phase III: During Recovery Movement Control Order 

(RMCO), t ≥  tlift  (10/6/20-23/2/21)  
 

β
I
(t) = {

β
1
t + β

2 
,                             t < tlock           

β
0
e

−((t − tlock)/(τβ))
 ,                tlock ≤ t < tlift

(1 − r)(β
1
(t − tlift) + β

2 
), t ≥ tlift            

 (7) 

β
E

(t) = p β
I
(t) (8) 

γ(t) = {

γ
2
(t) +  γ

3
 ,                                t < tlock

γ
0
 +

 𝛾1

1 + 𝑒(−𝑡 + 𝑡𝑙𝑜𝑐𝑘 + 𝜏𝛾)
,      t ≥ tlock

 (9) 

μ(t) = {

μ
2
(t) + μ

3
,                            t < tlock        

 μ
0
e

-((t − tlock)/(τμ))
 + μ

1
,            tlock ≤ t < tlift

μ
2
 (t − tlift) + μ

3
,      t ≥ tlift 

 (10) 

δ(t) = 0 (11) 
 

 

To understand the formulated time-varying infection rate βI, 

firstly, at the beginning of the outbreak, which is Phase I: before 

Movement Control Order (MCO), people had high mobility and 

were free to move. Thus, the infection rate β(t) is assumed to be 

a linear function, β1(t) + β2. For Phase II, when Movement 

Control Order (MCO) was introduced in Malaysia, the infection 

rate decayed due to the isolation of people and physical 

distancing, and this behavior was described by an exponential 

function, β
0
e

−((t − tlock)/(τβ))
 with β0 as the initial value of infection 
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rate during that phase and 1/ τβ refers to the decay rate. 

Conditional Movement Control Order (CMCO) will still be 

regarded as a lockdown or restricted movement even though 

more economical and social activities were allowed due to 

limited operating hours and stringent standard operating 

procedures (SOP). Lastly, for Phase III, when the lockdown was 

lifted whereby more economic and social activities were 

allowed, for instance, interstate travel, tourism business, 

unessential premises or even schools, the infection rate was 

assumed to follow the trend at the beginning of the outbreak, 

which is increasing when no lockdown or stringent movement 

order was implemented. 

Following the work of Jamil et al. [15], a fraction of 

compliance to the SOP was included in the infection rate as it 

affects or contributes to the new values of infection rate and  

based on the experience in facing the pandemic (1−r)(β1 (t−tlift) 

+ β2), where r was the percentage of Malaysians who followed 

the SOPs and practiced the 3Ws, even after the government had 

lifted the lockdown. The numeric value of r was between 0 and 

1, which will be regarded as a percentage value. (1−r) here 

refers to the percentage of Malaysians who are not following the 

SOPs that lead to the increment of the values of infection rate β. 

Meanwhile, the rest of it is the linear function.  

Time-varying recovery rate γ(t) for Phase I was formulated 

based on linear function as it increases linearly before MCO, and 

logistic growth function for Phase II as the value of recovery rate 

is believed to display in a sigmoidal curve starting the first day 

of MCO and reach equilibrium state at the end of the simulation 

period. While time-varying death rate 𝜇(t), it was formulated 

based on linear function for Phase I and III and using 

exponential decay function during Phase II.  

 

C. Research Design

 
 

Fig. 2. Research flowchart 

The flowchart for the computational work of this study is 

depicted in Fig. 2 where Python via Jupyter Notebook is the 

programming platform. SciPy odeint function is used to solved 

the ODEs [21]. The ODEs require initial values in order to 

obtain the unique solutions, in this case, the initial values for 

each of population states are given in Table I. In order to fit the 

model to the actual cases in Malaysia, there are totally 16 

parameters need to be optimized by virtue of Least-Squares 

minimization, using several optimization algorithms under the 

LMfit package, which are Trust-Region Reflective (TRR), 

Levenberg-Marquardt (LM), Nelder-Mead (NM), and 

Sequential Linear Squares Programming (SLSQP). Since all the 

algorithms are iterative methods, they require initial guesses to 

begin with. It will be better if the guesses can be set closer to the 

actual optimized solutions as it will speed up the convergence. 

The initial guesses for all 16 parameters are summarized in 

Table II. 

 

D. Input Data and Initial Values 

 

According to Department of Statistics Malaysia [22], the 

population of Malaysia as of early April 2020 is 32,653902 and 

this is the value of N in Eq. (6). The initial values of infected 

I(0), recovered R(0) and death D(0) on 25 January 2020 are 3, 0 

and 0, respectively [14]. In reality, exposed (E) data are not 

available, thus by looking at small value of I(0), the initial 

exposed E(0) can be assumed 0. Since the total population is 

considered unchanged over the simulation time interval, we set 

the constant N = 32,653902 and therefore, from Eq. (6) the initial 

value of susceptibility S(0) is 32,653899. 

 
TABLE I.  INITIAL VALUES FOR SOLVING THE ODES OF SEIRD 

MODEL 
 

 

 

There are totally sixteen unknown parameters that required 

initial guesses but fifthteen of them are already been investigated 

in References [15] and [18]. These values are considered the 

closest to the solutions by the iterative optimization algorithms. 

Thus, only one parameter i.e. the proportionality constant p left 

where it is assumed to be close to unity rather than five as 

suggested in Reference [11], the study on China’s COVID-19 

spread. This is because the Malaysian population is lower 

compared to China, and Malaysia government has stringently 

enacted a mandatory 7-days quarantine for everyone with a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Mathematical model formulation (system of ordinary 

differential equations (ODEs) with time-varying coefficients) 

Initialization: 

S(0), E(0), I(0), R(0), D(0) 

16 unknown parameters 

Optimize parameters using three different optimization 

algorithms under LMfit package (Levenberg-Marquardt, 

Nelder-Mead, Trust-Region Reflective and Sequential Linear 

Squares Programming 

Solve the model using numerical method for general 

integration of ODEs system by using odeint built in 

function under Scipy library in Python 

Implementation of the best 

optimization algorithm in the 

simulation of SEIRD 

modelAnalyse results 

End 

Analyse results 

Initial States Values  Sources 

Susceptible, S(0) 32,653899 Eq. (6) 

Exposed, E(0) 0 Assumption 

Infected, I(0) 3 [14] 

Recovered, R(0) 0 [14] 

Death, D(0) 0 [14] 
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closed contact history for the whole simulation period, which a 

bit reduce the risk of the SARS_CoV2 transmission between 

exposed (E) and susceptible (S), giving p a value of unity. This 

unity implies that the infection rate β
I
, which is based on 

ordinary transmission is equal to the infection rate β
E

, which 

signifies transmission in sporadic cases that involving 

asymptomatic individuals infecting susceptible (S). 

 
TABLE II.  THE INITIAL PARAMETER INPUT FOR THE 

OPTIMIZATION PROCEDURES 

 

 

Parameters 

 

Values 

 

Sources 

Infection rate, β(t)  

β0 = 0.16100732 

 
β1 = 0.00142347 

 

β2 = 0.07373335 

[15] 

Incubation rate, σ 0.15 [18] 

Recovery rate, γ(t) 
 

 

 

γ0 = 0.02590983 
 

γ1 = 0.0267004 

 
γ2 = 8.3000e-05 

 

γ3 = 0.00606688 

[15] 

Mortality rate μ(t) 

μ0 = 0.00151062 
 

μ1 = 1.5316e-04 

 
μ2 = 8.0126e-05 

 

μ3 = 2.5064e-04 

[15] 

Characteristic time of 

transmission, τβ  
      21.7321554 [15] 

Characteristic time of 

recovery, τγ  
      12.3593006 [15] 

Characteristic time of 
death, τμ  

             26.3593227 [15] 

Proportion βE over βI, p  
 

1.002 

 

Assumption 

 

 

III. RESULT AND DISCUSSION 

 

In this section, we will compare the four optimization 

algorithms’ performances to identify which one has the least 

error. Then, by using the optimized parameters obtained from 

the best algorithm, we will predict the possible infected (I), 

recovered (R) and death (D) cases of COVID-19 by changing 

the parameter that corresponds to the variation in the Malaysian 

isolation abiding behaviors. 

A. Optimization Algorithm Performance 

 

Trust-Region Reflective (TRR), Levenberg-Marquart (LM), 

Nelder-Mead (NM) and Sequential Linear Squares 

Programming (SLSQP) are different built-in optimization 

algorithms under the LMfit Python package, provided for non-

linear optimization curve fitting problems. Both TRR and LM 

techniques are based on the knowledge on derivative of the 

objective (or cost) function. While TRR adopts the process of 

solving a system of equations with a gradient from an objective 

function, which constitutes the first-order optimality condition 

for a bound-constrained minimization [23], LM combines 

gradient descent and the Gauss-Newton as potential possibilities 

for the algorithm's direction at each iteration [24]. NM is a 

directive free simplex-based direct search technique for 

multidimensional unconstrained optimization [25] and  SLSQP  

is a technique that transforms an optimization problem into a 

successive solution of quadratic programming problems [26]. 

These four optimization algorithm performances in fitting 

the time-varying coefficient SEIRD model can be compared 

based on the obtained Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE). These measurements give us 

information on the exact amount of deviation from the actual 

values. The optimization technique with the lowest error of 

Mean Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) therefore is the best fitting approach [27].  

The fitting of the SEIRD model by the four different 

optimization algorithms, for I, R, and D cases, are presented in  

Fig. 3 – Fig. 5, respectively and the error measurements of TRR, 

LM, NM and SLSQP are listed in Table III. Table III consists of 

MAE, RMSE, average of each accuracy metric for infected (I), 

recovered (R) and death (D), and average of the accuracy metrics. 

Finding the average of the accuracy metrics helps in selecting 

the best optimization algorithm. Nelder-Mead (NM) algorithm 

resulted the least average value of accuracy metrics which is 224 

showing the best overall performance compared to the other 

algorithms. It reduces the measurement error of MAE and 

RMSE in fitting the time-varying coefficients SEIRD model 

with the least MAE of 246 and RMSE of 347 for infected (I) 

while for recovered (R), as low as 270 for MAE and 407 for 

RMSE. Further, for death (D), 20 of MAE and 39 of RMSE.  

Nelder Mead (NM) optimization algorithm has significantly 

reduced the RMSE as much as 66.63%, 85.88% and 72.78% 

from the early simulation using the initial value of parameters 

(initial guesses) compared to the other optimization algorithms 

for infected (I), recovered (R) and death (D) cases, respectively. 

NM algorithm shows the best performance in reducing the 

errors. The best result showed by Nelder-Mead (NM) algorithm 

is in line with what Jamil et al. [15] has observed while fitting 

the 14 unknown parameters of the SIRD model to actual 

COVID-19 cases in Malaysia. 

By using Nelder-Mead (NM) as an optimization algorithm 

for our predictive modified SEIRD model, we obtained the 

result of a modified SEIRD model simulation that has a better 

fit to the actual data of COVID-19 infected (I), recovered (R) 

and death (D) cases as in Fig. 3–Fig. 5. 
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Fig. 3. Fitted infected (I) curves by the optimization methods 

 

 
Fig. 4. Fitted recovered (R) by the optimization methods 

 
Fig. 5. Fitted death (D) by the optimization methods 
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TABLE III.  PERFORMANCE MEASUREMENT COMPARISON FOR 

FOUR OPTIMIZATION ALGORITHMS 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. highlights the simulation of infected (I) cases which  

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 3. highlights the simulation of infected (I) cases which 

shows how our proposed SEIRD model fit the actual data of the 

infected (I) cases. In this study, infected (I) cases are the data of 

COVID-19 active cases resulting in the bell-shaped form for the 

infected (I) curve. Our proposed modified SEIRD model proved 

to be better than Anastassopoulou et al. [28], who adopted the 

compartmental SIRD model without considering the exposed (E) 

compartment. Table IV presents the comparison of Root Mean 

Squared Error (RMSE) between our proposed model and other 

published study.  

 
TABLE IV.  COMPARISON OF ROOT MEAN SQUARED ERROR (RMSE) 

FOR EPIDEMIOLOGICAL MODEL 

 

 

No. 

 

 

Source 

 

Model 

 

RMSE of 

infected (I) 

 

1. Anastassopoulou et al. [28] SIRD 6.128918 x 102 

2. Our proposed model SEIRD 3.47739 x 102 

3. Jamil et al. [15] SIRD 0.80078 x 102 

 

 

Table V shows the 16 optimized parameters of our proposed 

modified SEIRD model. Table VI summarizes the date of peak 

infection, plateau and new wave that has been predicted by our 

proposed SEIRD model. Our proposed model can predict the 

peak of infected (I) cases during the second wave of COVID-19, 

which is almost similar to the actual peak of infected (I) which 

is in April 2020. Besides, the predicted date of the infected (I) 

curve to be plateaued, and the plateau breakthrough (new wave) 

is from mid to end of July 2020. However, based on Fig. 3. there 

is a slight unfit at the infected (I) curve during Jun 2020 due to 

the sudden spike of infected cases reported among immigrants 

in immigration detention centers near Kuala Lumpur, which 

started on 22 May with 35 reported new infected cases. Then, 

the number had jumped to 410 new infected cases across four 

sites by the end of May 2020, which portrays the second highest 

peak of infected (I) cases during the second wave of COVID-19 

in Malaysia [29].  

 
TABLE V.  VALUE OF OPTIMIZED PARAMETERS FOR SEIRD MODEL 

ESTIMATED BY NELDER-MEAD ALGORITHM 

 

 

Parameter 

 

 

Value 

 

Parameter 

 

Value 

β
0
 0.22160899  μ

0
 0.07271124 

β
1
 0.06311759  μ

1
 0.01222001 

β
2
 0.18181217  μ

2
 0.34447642 

σ 0.50  μ
3
 0.02449339 

γ
0
 0.00205247     p 1.42616385 

γ
1
 0.06448763    τβ 11.9729414 

γ
2
 0.04059854    τγ 19.0321813 

γ
3
 0.07289225    τμ 5.31669064 

 
TABLE VI.  COMPARISON OF INFECTED (I) CASES BETWEEN 

ACTUAL AND SIMULATED DATA 

 

 

Infected Cases 

 

 

Actual Data 

 

Simulated Data  

Peak infection of 

second wave 

2597 

 (5th April 2020) 

2954 

 (15th April 2020) 

Plateau infection 
of second wave 

77 
 (4th July 2020) 

284 
 (15th July 2020) 

 

New wave 

123  

(20th July 2020) 

290 

 (28th July 2020) 

 

 

Optimization 

Algorithms 

 

 

Cases 

 

MAE 

 

RMSE 

Trust-Region 

Reflective  
(TRR) 

 

 

I 

 

264.421 
 

 

364.691 
 

 

R 

 

270.931 
 

 

424.759 
 

 

D 

 

22.029 

 

 

42.9426 

 

Average of each accuracy metric 

  185.794 277.4642 

Average of accuracy metrics 

 231.629 

Levenberg-Marquardt 

(LM) 

 

 

I 

 

524.918 

 

 

700.379 

 

 

R 

 

1391.19 
 

 

1836.63 
 

 

D 

 

44.7798 
 

 

95.8968 
 

Average of each accuracy metric 

 653.629 877.632 

Average of accuracy metrics 

 765.631 

Nelder-Mead 

(NM) 

 

 

I 

 

246.249 

 

 

347.739 

 
R 

 
288.001 

 
407.077 

 

 
D 

 

 
20.6546 

 

 
39.601 

 

Average of each accuracy metric 

 184.968 264.806 

Average of accuracy metrics 

 224.887 

Sequential Linear 

Squares Programming 

(SLSQP) 

 

I 

 

255.055 

 

 

355.759 

 

 

R 

 

275.624 

 

 

409.632 

 

 
D 

 
21.3168 

 
41.2157 

Average of each accuracy metric 

 183.999 268.869 

Average of accuracy metrics 

 226.434 
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B. Simulations of COVID-19 Cases with the Effects of 

Population Behaviour 

 

In combating the pandemic of COVID-19, there are two 

things that need to be considered and studied: virus behavior and 

population behavior. SARS-CoV-2 behavior is very complex to 

control as it mutates itself. Fortunately, we have the capacity to 

control population behavior. Good population behavior might be 

the best exit to this life-threatening pandemic as it helps break 

the chain of COVID-19 transmission.  

Based on Fig. 3, we observed that the third wave of COVID-

19 in Malaysia started earlier, on 20 July 2020, due to a 

consistent increment in the daily new infected (I) cases. By 10 

June 2020, the Malaysian government has implemented 

Recovery Movement Control Order (RMCO) which relaxes a 

few stringent movements control orders. To simulate our 

proposed modified SEIRD model, we regard the first date of 

Recovery Movement Control Order (RMCO) as the reopening 

date from Movement Control Order (MCO) on 10 June 2020. 

Fig. 6. shows an exciting and paramount significant result: the 

effects of population behavior on the transmission dynamics of 

COVID-19 in Malaysia which portrays the projection of 

infected (I) cases of COVID-19 in Malaysia after Movement 

Control Order (MCO) has been lifted-up during early of the third 

wave. 

The percentage of the quarantine rules-abiding population 

may indicate population behavior. It is essential to be monitored 

in curbing the spread of COVID-19 as this value affects the 

occurrence of a new wave of the pandemic and the number of 

infected (I) cases. Rules that must be followed include keeping 

a safe distance from others, donning face masks, avoiding large 

gatherings, and checking the temperature. To study the effect of 

population behavior on transmission dynamics of COVID-19 in 

Malaysia during the early third wave, we set five different 

percentage values of populations who abide by the rules (r) to 

simulate the effects of population behaviors in Malaysia which 

are 90%, 60%, 55%, 50% and 30%. 90% is categorized as strong 

compliance. 60%, 55% and 50% are categorized as moderate 

compliance, while 30% are weak. Fig. 6 highlights that the 

higher the percentage of the quarantine rules-abiding population, 

the lesser the number of peak infected (I), peak recovered (R) 

and peak death (D) cases, which are good for the country. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on Fig. 6, with the higher value of r, 90%, which is 

indicated by the chocolate diamond marker curve, may subside 

the second wave of COVID-19 in Malaysia, resulting in the 

endemic equilibrium on 17 October 2020, where the infected (I) 

cases remain approximately constant to 2 infected (I) cases for 

long period of time, while with the lower value of r, 30%, this 

may lead to the occurrence of new wave incidence within a short 

term where it may infect up to 10,000 population in Malaysia on 

28 July 2020 and becoming a catastrophe to every sector of 

Malaysia includes the essential sector, healthcare system of 

Malaysia. From this figure, we also observed that the blue curve 

almost fits the actual data of COVID-19. This means the 

percentage of the quarantine rules-abiding population after the 

reopening date, 10 June 2020, is about 60% indicating moderate 

compliance. This moderate compliance might be referred to the 

enormous amount of 67,542 compound notices reported by the 

Malaysia government from March 2020 until the end of the year. 

To summarize this section, the population behavior effects 

upon reopening date of Movement Control Order (MCO) can be 

studied via our proposed SEIRD model, which considers 

sporadic cases using different values of r, the percentage of the 

quarantine rules-abiding population. With the above-presented 

results, the Malaysian government needs to regulate the 

population behavior as it may be the best strategy to exit the 

pandemic of COVID-19. 

 

 

 

Fig.6. Forecast of COVID-19 cases in Malaysia after the reopening date, 10th June 2020 with the effects of population behavior  
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IV. CONCLUSION 

 

A more extended compartmental epidemiological model 

leads to increasing unknown parameters that must be solved. 

This study proposed a time-varying coefficient SEIRD model 

that considers sporadic cases. Intending to fit the time-varying 

coefficient SEIRD model to the actual data of COVID-19 cases, 

this study has observed the comparison between four 

optimization algorithms (Trust-Region Reflective, Levenberg-

Marquart, Nelder-Mead, Sequential Linear Squares 

Programming). The evaluation using Mean Absolute Error 

(MAE) and Root Mean Squared Error (RMSE) indicates that 

Nelder-Mead Algorithm outperforms the other optimization 

algorithm. Thus, this study proposed Nelder-Mead as the best 

optimization algorithm among Trust-Region Reflective (TRR), 

Levenberg-Marquardt (LM) and Sequential Linear Squares 

Programming (SLSQP) in fitting time-varying coefficient 

SEIRD model with more extended time-window simulation. 

The SEIRD model simulations presented in Section 3 were done 

by using Python programming language via Jupyter Notebook, 

adopting Python built-in functions which are odeint from 

Scipy.integrate package and minimize from Lmfit package to 

solve the system of ordinary differential equations (ODEs) and 

reduce the errors for optimization, respectively. We found that 

our proposed SEIRD model, which an extended SIRD model is  

better in predicting COVID-19 cases in Malaysia for longer 

time-window simulation compared to other study [25], which 

adopted SIRD model in predicting the COVID-19 spread as we 

managed to obtained less value of Root Mean Squared Error 

(RMSE), as low as 347 infected (I) for 238 days simulations. 

With that, remarks on the importance of considering the exposed 

(E) compartment in modelling transmission dynamics of 

COVID-19 as it helps in structuring and formulating a more 

relevant model. Qualitatively, this study suggests that the 

percentage of quarantine rules-abiding population, r needs to be 

remained at a high level, as high as 90%, to ensure Malaysia 

successfully reaches disease-free or endemic equilibrium so it 

may halt a leading emergence of any new wave of this infectious 

disease. Everyone is responsible for keeping themselves and 

everyone safe by following preventive measures against the 

transmission of COVID-19, for instance, being aware of social 

distancing while having a close conversation, avoiding mass 

gatherings in confined spaces or crowded places and observe on 

self-hygiene by regularly washing hands. 
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