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Abstract—Diabetic retinopathy is one of the most dangerous 

complications for diabetic patients, leading to blindness if not 

diagnosed early. However, early diagnosis can control and prevent 

the disease from progressing to blindness. Transformers are 

considered state-of-the-art models in natural language processing 

that do not use convolutional layers. In transformers, means of 

multi-head attention mechanisms capture long-range contextual 

relations between pixels. For grading diabetic retinopathy, CNNs 

currently dominate deep learning solutions. However, the benefits 

of transformers, have led us to propose an appropriate 

transformer-based method to recognize diabetic retinopathy 

grades. A major objective of this research is to demonstrate that 

the pure attention mechanism can be used to determine diabetic 

retinopathy and that transformers can replace standard CNNs in 

identifying the degrees of diabetic retinopathy. In this study, a 

Swin Transformer-based technique for diagnosing diabetic 

retinopathy is presented by dividing fundus images into 

nonoverlapping batches, flattening them, and maintaining 

positional information using a linear and positional embedding 

procedure. Several multi-headed attention layers are fed into the 

resulting sequence to construct the final representation. In the 

classification step, the initial token sequence is passed into the 

SoftMax classification layer, which produces the recognition 

output. This work introduced the Swin transformer performance 

on the APTOS 2019 Kaggle for training and testing using fundus 

images of different resolutions and patches. The test accuracy, test 

loss, and test top 2 accuracies were 69.44%, 1.13, and 78.33%, 

respectively for 160*160 image size, patch size=2, and embedding 

dimension C=64. While the test accuracy was 68.85%, test loss: 

1.12, and test top 2 accuracy: 79.96% when the patch size=4, and 

embedding dimension C=96. And when the size image is 224*224, 

patch size=2, and embedding dimension C=64, the test accuracy: 

72.5%, test loss: 1.07, and test top 2 accuracy: 83.7%. When the 

patch size =4, embedding dimension C=96, the test accuracy was 

74.51%, test loss: 1.02, and the test top 2 accuracy was 85.3%. The 

results showed that the Swin Transformer can achieve flexible 

memory savings. The proposed method highlights that an 

attention mechanism based on the Swin Transformer model is 

promising for the diabetic retinopathy grade recognition task. 

Keywords—Diabetic retinopathy, Swin Transformers, Image 

classification 

I. INTRODUCTION

As one of the leading causes of blindness worldwide, Diabetic 

Retinopathy (DR) has to be taken seriously. People with diabetes 

are expected to increase in number in the foreseeable future 

because of increased life expectancy, decadent lifestyles, and 

other causes [1]. Diabetic retinopathy is a frequent consequence 

and a leading cause of blindness in the general population. When 

blood sugar levels are adequately controlled, and therapy is 

given on time, many DR problems may be avoided. Medical 

professionals recommend that diabetic people be checked at 

least twice a year since the condition progresses, and early 

indicators of sickness are challenging to detect [2, 3]. Diabetic 

Mellitus, a condition of sugar metabolism, affects one in eleven 

people worldwide, and by 2040, it is anticipated to affect one in 
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10 people [4]. By 2045, this problem is expected to impact more 

than half of the world's population, reaching 700 million [5, 6]. 

Diabetic retinopathy may progress through four stages: (i) 

non-proliferative retinopathy's initial stage, microaneurysms 

(MA), is linked to mild retinopathy. (ii) Non-proliferative 

retinopathy of moderate severity, as the condition progresses, 

the retina's blood vessels may twist and expand, rendering them 

ineffective in transporting blood. (iii) During severe non-

proliferative retinopathy, the retina gets a signal to begin 

creating new blood vessels when more blood vessels in the retina 

are blocked. (iv) Excessive glucose levels in the blood may 

cause diabetic retinopathy (PDR), a condition in which the 

retina's development characteristics are released and new blood 

vessels proliferate in the vitreous gel, flooding the eye, (Fig. 1, 

and Table 1) [7]. 

 
 

Fig. 1.  Depicts a normal retina and the effects of diabetes on the retina 
 

 
TABLE I.  THE DR STAGES DEPENDING ON LESIONS 

CLASSIFICATION [7] 

 

DR ,Severity Level Lesions 

No DR              No ,lesions. 

Mild                DR Micro-aneurysms only. 

 

Moderate       DR has more than MA and less than DR 

Severe              more than 20 intraretinal HM in each of 4 
quadrants 

proliferative DR.       Proliferative DR One or more of the following: 

neovascularization, pre-retinal HM/ Vitreous 

 

 

Automatic classification of DR plays a role in decision-

making, ViT has gained great importance in the field of 

computer vision, however, studies include the use of computer 

vision transducers in the medical field. Vision transformer (ViT) 

was proposed for the first time to be used with machine 

translation tasks in natural language processing and had an 

advanced performance in this field because it learns local and 

The scalability of training with information is universal across 

different layers, which is the opposite of CNN, which has very 

limited sensory fields [8, 9]. Recently a pure transformer has 

been proposed called Shifted windows (Swin) Transformers. 

This model consists of several blocks of Swin transformers, 

providing a hierarchical representation of the input image which 

is then used in various computer vision tasks. The authors [10] 

achieved advanced performance in image classification, object 

detection, and semantic segmentation [11]. The possibility of 

applying transformers in the field of view of the calculator such 

as image recognition demonstrates the success of ViT and Swin 

Transformer [8-12], the architecture of the swin that uses local 

computing via non-overlapping windows and thus achieves 

linear complexity with image size O (M ∗ N) instead of the 

complexity found in ViT which is quadratic O (N2) and thus the 

swin can be more efficient [9]. Furthermore, they also linked 

blocks of pay attention to these patch merge blocks, which are 

used to combine adjacent patches to produce a hierarchical 

representation to handle differences in the scale of visible 

entities [12]. The partitioning window in the second layer on the 

right is shifted by 2 image patches, resulting crossing in the 

boundary of the previous window [13]. 

There are two important concepts, hierarchical maps and 

window attention shifting, that the Swin Transformer introduces 

to solve problems for ViT. Where the name Swin Transformer 

comes from "Shifted window”. Fig. 2 shows the structure of the 

Swin Transformer. 

 
Fig. 2.  The Architecture of the Swin Transformer 

 

 

Architecture of Swin transformer consisting of 4 Stages: 

 

A. Patch Partitioning 

 

The primary role of the Patch Partition is to convert the input 

image into correction blocks, where each of these blocks 

consists of four adjacent pixels. Where the image entered into 

Patch Partition, each (4×4) adjacent pixel is divided into a patch, 

where each (4×4) and three channels of the color image are 

converted into patches (1×1) that are flat and have (48) channel 

as shown in Fig. 3. Since the size of each patch is 4 × 4 so the 

number of pixels per patch will be 4 × 4 = 16 in a flat shape, so 

that each of these pixels contains three values of R, G, and B, so 

it's 16 × 3 = 48 as show in Fig. 4. 

 

 
Fig. 3.  Patch partition 
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Fig. 4.  Image from Patch partition 

 

 

The input image passes through patch partition) which is 

divided into (4×4) sized falls. This helps in creating debug 

symbols,  where after patch partition the shape of the image is 

changed to be whose shape is (W/4, H/4, × channel) = (W/4, 

H/4, × 3).  

 

B. Linear Embedding  

 

Linear Embedding performed after the patch partition step, 

which implement a linear transformation on the image channel. 

This step is executed to convert the input tokens and the output 

tokens to vectors as well as. The feature in this layer looks like 

a convolution layer, the number of channels in which the 

convolution mapping is done is from 48 dimensions to 96 

dimensions. On the application side, patch embed is used to 

combine steps patch, partition and linear mmbedding where 

convolution, kernel is used. 

 

C. Swin Transformer Block 

 

Swin Transformer is designed by replacing the multi-head 

MSA to a switched window-based module with a switched 

window-based module, this layer has been swapped but the rest 

of the layers remain without any replacement as shown in Fig. 

5. 

 
 

Fig. 5.  Swin transformer blocks 

 

The Swin transformer block contains two sub-modules, 

where the first module uses W1-MSA and in the second module 

“SW-1MSA” is used. Each of these sub-layers contains a 

normalization layer [14-16]. Each W-MSA layer is followed by 

a 2-layer MLP with GELU nonlinearity between them where 

LN is applied before both MSA and MLP.Patch tokens pass 

through the linear embedding with size image (W/4, H/4, C) 

and are referred as “Stage 1”. The number of 2 * 2 patch tokens 

is reduced and the shape of the tokens is (W/8, H/8, 2C) is 

denoted as “Stage 2”, (W/16, H/16, 4C) as “Stage 3”, and 

(W/32, H/32, 8C) as “Stage 4” respectively. Equations (1-4) 

state the mathematical expression of W-MSA and SW-MSA as 

follows [17]: 

 

𝑧∧𝑙 = 𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (1) 
  

𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙−1)) + 𝑧∧𝑙  (2) 
                         

𝑧∧𝑙+1 = 𝑆𝑊 −𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙)) + 𝑧𝑙   (3) 
 

 𝑧𝑙+1 = 𝑀𝐿𝑃(𝐿𝑁(𝑧∧𝑙+1)) + 𝑧∧𝑙+1  (4) 
              

Where (z ^ l) is the item in the current block, (zl – 1) is the item 

in the previous block, (LN) is layer-norm, (MLP) is multi-layer 

perceptron, (W1-1MSA) is window self-attention, and (SW1-

1MSA) is shift window self-attention [15]. 

 

D. Patch Merging 

 

The main function of patch merging is to reduce both the 

height and width of the image by sampling downwards to reduce 

the accuracy. This is before the start of each phase and this 

function is equivalent to the down sampling process that is in 

CNN. In the patch merging stage, each (2×2) of the adjacent 

pixels is divided into a patch, and the pixels of the same colour 

are grouped to get 4 feature maps.  These four feature maps are 

linked in the depth direction, the output from here being passed 

through a layer (LN) and layer (FC) is used to linearly change 

the depth direction of the feature map, whereby the feature map 

depth is changed from C to C/2 as shown in Fig. 6. 

 

 
Fig. 6.  Patch Merging 

 

 

II. RELATED WORK 

 

Cao et al. proposed a Swin-Unet, where the Swin 

Transformer block used as a basic unit in building the model for 

segmentation of medical images. A benchmarking comparison 
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was presented for the development of transformers in the field 

of medical image, where the (Swin-Unet) has a patch expansion 

layer to map the decoder's feature maps and shows superior 

performance in restoring fine details compared to binary down 

sampling [8]. 

Huang et al. suggested a SwinMR which is a new Swin-

based method used for rapid MRI reconstruction. The built 

model was consisting of an input unit (IM), a feature extraction 

unit (FEM), and an output unit (OM). When applying SwinMR, 

it achieved excellent results for high reconstruction. Quality 

compared to other measurement methods under noise 

interruption and on different data sets [17]. 

Jiang et al. contemplated a new approach called SwinBTS 

for 3D medical image segmentation. This approach combines a 

Transformer, convolutional neural network, and decoder 

architecture to determine the 3D brain tumor semantic 

segmentation. Experimental results showed that the method 

gives better performance in segmenting MRI images of a brain 

tumor when compared with some state-of-the-art methods (for 

example “Residual U-Net”, “Attention U-Net”, and 

“TransBTS”) [18-21]. 

Hao et al. Which is a Swin converter that is two-stream and 

used in the classification of remote sensing images, and TSTNet 

consists of two vertical parts which are the original stream and 

the second part is the edge stream, and through them the features 

are combined, and it has achieved good performance and also 

designed a driver unit called DESOM based on Sobel To extract 

the features in the edge and thus give us a better rating [22]. 

 

III. EXPERIMENTS SETTINGS  

 

A. Datasets 

 

The APTOS 2019 (Asia Pacific Teleophthalmology Society) 

Kaggle benchmark dataset This rule contains images of the 

retina that were taken using fundus imaging, and the conditions 

that were used in the imaging were very diverse, and this rule 

was used in the challenge of detecting blindness This data has 

been manually classified by specialists into 5 classes (0 to 4) 

where “0” means no DR; “1” means Mild1; “2” means  

1Moderate; “3” means  Severe1; and “4” means Proliferative1 

DR2) to indicate different severity levels of DR [23]. Table II 

shows the number of retinal images in the dataset to indicate the 

level1 of meverity, [24-30]. 

 
TABLE II.  DATASET SUMMARY OF APTOS DATASET 

 

Severity level Number of images 

Class 00 (Normal1) 1805 

Class 1(Mild1) 370 

Class 22 (Moderate1) 999 

Class 33 (1Severe) 193 

Class 41 (Proliferative1) 295 

Total1  36621 

 

 

B. Implementation details 

 

Used Swin transformer to automatically recognize Diabetic 

Retinopathy progression level because the Swin transformer can 

achieve flexible memory savings. Where used GPU with 5.71 

GB memory/12.68 GB Disk, we set the input image size as 160 

×160 and 224 × 224. Here in the Table III below is the 

combination of hyperparameters we are chosen after carefully 

tuning each of them across a wide range of values. 

Table IV, Fig. 7 and Fig. 8 shows the loss and accuracy 

across the training and validation process with input image size 

160 ×160 when Patch size =2, C=64, Patch size =4, C=96 and 

Table V, Fig. 9 and Fig. 10 shows the loss and accuracy across 

the training and validation process with input image size 224 

×224 when Patch size =2, C=64, Patch size =4, C=96. 

 
TABLE III.  HYPER-PARAMETERS IN SWIN TRANSFORMER TRAINING 

 

Hyper-parameter Value  

Batch Size 16  

Learning Rate 0.05  

Size of shifting window 1  

Size of attention window 2  

Epoch 80  

Weight decay 1e-3  

optimizer Adam  

Patch size 2 4 

Embedded dimension  64 96 

# Param 987,381 567,445 

 

TABLE IV.  CLASSIFICATION ACCURACY AND LOSS (IMAGE SIZE (160*160) 

Epoch 

 

Patch size =2, C=64 Patch size =4, C=96 

Train- 

Acc  

Train -

loss 

top-2-

acc 

Val - 

Acc  

Val-loss Val-

top-2-

acc 

Train- 

Acc  

Train -

loss 

top-2-

acc 

Val - 

Acc  

Val-loss Val-

top-2-

acc 

1 0.4564 11.7449 0.6646 0.4125 8.2687 0.4669 0.4537 23.350 0.6786 0.6786 3.7794 0.7857 

10 0.6612 1.1450 0.7935 0.5992 1.3052 0.7860 0.6914 1.0644 0.8272 0.6865 1.0510 0.8095 

20 0.7059 1.0276 0.8312 0.6498 1.1441 0.7821 0.7381 0.9463 0.8690 0.7421 0.9478 0.8611 

30 0.7323 0.9323 0.8716 0.6459 1.1282 0.8132 0.8961 0.8961 0.8832 0.6905 1.0901 0.7778 

40 0.7488 0.9079 0.8781 0.6498 1.0653 0.7665 0.8100 0.8016 0.9114 0.6984 1.0232 0.8135 

50 0.7714 0.8586 0.8924 0.6654 1.1918 0.7977 0.8395 0.7601 0.9290 0.7024 1.0530 0.8373 

60 0.8208 0.7717 0.9150 0.6654 1.2200 0.7704 0.8395 0.7513 0.9317 0.7063 1.0252 0.8294 

70 0.8499 0.7265 0.9380 0.6732 1.2898 0.7588 0.8642 0.7142 0.9484 0.6905 1.1238 0.8492 

80 0.8803 0.6785 0.9458 0.6576 1.2626 0.7743 0.8849 0.6690 0.9563 0.6984 1.0851 0.7976 
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Fig. 7.  Training and validation over epoch for APTOS 2019 dataset, (a) 
accuracy, (b) loss, (epochs=80), image size (160×160), patch size =2, C=64 

 
Fig. 8.  Training and validation over epoch for APTOS 2019 dataset, (a) 

accuracy, (b) loss, (epochs=80), image size (160×160), patch size =4, C=96 

 

 
TABLE V.  CLASSIFICATION ACCURACY AND LOSS (IMAGE SIZE (224*224) 

 

Epoch 
 

Patch size =2, C=64 Patch size =4, C=96 

Train- 

Acc  

Train -

loss 

top-2-

acc 

Val - 

Acc  

Val-

loss 

Val-

top-2-
acc 

Train- 

Acc  

Train -

loss 

top-2-

acc 

Val - 

Acc  

Val-loss Val-top-

2-acc 

1 0.5518 5.7511 0.6460 0.6187 4.4559 0.4280 0.4684 26.3868 0.6667 0.4757 7.6186 0.7431 

10 0.6993 1.0575 0.8325 0.5759 1.2574 0.7549 0.6987 1.0220 0.8387 0.6389 1.0630 0.8507 

20 0.7128 0.9727 0.8521 0.7043 1.0055 0.8210 0.7184 0.9704 0.8642 0.7604 0.9229 0.8681 

30 0.7401 0.9212 0.8725 0.7198 0.9782 0.8171 0.7357 0.9529 0.8611 0.7604 0.9818 0.8229 

40 0.7761 0.8509 0.9007 0.7082 1.0046 0.8132 0.7828 0.8561 0.8939 0.7222 1.0437 0.8438 

50 0.7879 0.8458 0.8998 0.6887 1.0596 0.8560 0.8233 0.7796 0.9240 0.7674 0.9862 0.8576 

60 0.8204 0.7826 0.9150 0.7043 1.0609 0.8171 0.8465 0.7415 0.8465 0.7326 0.9955 0.8438 

70 0.8811 0.6802 0.9423 0.6965 1.1076 0.8288 0.8623 0.7167 0.9444 0.7361 1.1023 0.8299 

80 0.8810 0.6801 0.9393 0.7043 1.0609 0.8289 0.8781 0.6865 0.9533 0.7500 1.0727 0.8750 

 
Fig. 9.  Training and validation over epoch for APTOS 2019 dataset, (a) 

accuracy, (b) loss, (epochs=80), image size (224×224), patch size =2, C=64 

 
Fig. 10.  Training and validation over epoch for APTOS 2019 dataset, (a) 

accuracy, (b) loss, (epochs=80), image size (224×224), patch size =4, C=96. 

IV. DISCUSSION 

 

We tested model on APTOS-2019 Blindness Detection 

dataset  whose data distribution between different classes is 

unbalanced, pre-training the model affects the performance of 

the transformer-dependent model. In this work, we use two 

different input size of image (160*160) and (2248224), patch 

size is 2 and 4, and embedding dimension is 64 and 96. In the 

case of selecting the patch size 4 and embedding dimension 96, 

the model give performance better than the patch size 2 and 

embedding dimension 64 for each input image sizes where the 

number of parameters in this case was 567,445 but in the second 

case was 987,381. Other parameters can be changed, as well as 

the change in the Swin transformer block to see its effect on the 

results. 

 

V. CONCLUSION 

 

Transformer has made great technical advances in deep 

learning and has achieved wide spread in the field of NLP and 

CV, because medical imaging is very similar to “CV”. Since 

the Swin transformer has great flexibility in modelling and its 

computational complexity is linear complexity proportional to 

the size of the image. This work used the Swin transform on 

APTOS 2019 Kaggle. It was also used to classify the DR to 5 

class, The results demonstrated that the Swin transform 



Rasha Ali Dihin et al. / IJIC Vol. 13 No. 1-2 (2023) 23-29 

 

28 

 

performs well in classifying DR with linear computational 

complexity as compared to the ViT transformer's quadratic 

computational complexity. Test accuracy for size image 160 

*160, patch size =2, embedding dimension C=64 was 69.44%, 

the Test loss: 1.13, and Test top 2 accuracy: 78.33%, while 

when the patch size =4, embedding dimension C=96, the Test 

loss was 1.12, Test accuracy: 68.85% and Test top 2 accuracy: 

79.96%.  For the size image 224*224, patch size =2, embedding 

dimension C=64 the Test loss: 1.07, Test accuracy: 72.5% and 

Test top 2 accuracy: 83.7%, while when the patch size =4, 

embedding dimension C=96 the Test loss: 1.02, Test accuracy: 

74.51% and Test top 2 accuracy: 85.3%. From the results we 

can conclude that it is possible to change other parameters, 

changing the Swin transformer block or combining it with deep 

learning algorithms that can give better results for automatically 

Diabetic Retinopathy recognition. Since the architecture of 

transformers is still quite new together in the field of CV and It 

is possible in the future to discover other variants of the 

attention layers, and also plan to use the hypercomplex to detect 

the mixing of symbols. 
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