
International Journal of Innovative Computing 13(1-2) 37-43

37

A Useful and Effective Method for Selecting a Smart

Controller for SDN Network Design and Implement

Mohammed Mousa Rashid

Information Institute for Postgraduate Studies

University of Baghdad

 Baghdad, Iraq

Email: phd202020555@iips.icci.edu.iq

Nadia Adnan Shiltagh Al-Jamali

Information Institute for Postgraduate Studies

University of Baghdad

 Baghdad, Iraq

Email: nadia.aljamali@coeng.uobaghdad.edu.iq

Submitted: 30/11/2022. Revised edition: 31/3/2023. Accepted: 31/3/2023. Published online: 13/9/2023
DOI: https://doi.org/10.11113/ijic.v13n1-2.417

Abstract—Software Defined Networking (SDN) is a modern

network architectural model that manages network traffic using

software. SDN is a networking scenario that modifies the

conventional network design by combining all control features

into a single place and making all choices centrally. Controllers

are the "brains" of SDN architecture since they are responsible

for making control decisions and routing packets at the same time.

The capacity for centralized decision-making on routing improves

the performance of the network. SDN's growing functionality and

uses have led to the development of many controller systems.

Every SDN controller idea or design must prioritize the control

plane since it is the most crucial part of the SDN architecture.

Studies have been done to examine, analyze, and evaluate the

relative advantages of the many controllers that have been created

in recent years. In this paper, finding the perfect controller based

on derived needs (for example, the controller must have a "Java"

or "Python" interface), a matching process compares controller

features with requirements .

Keywords—Smart controller, SDN, network design, network

traffic

I. INTRODUCTION

Because it is more controllable, dynamic, and cost-effective

than traditional architecture, SDN is a strong network

architecture that is best for high-bandwidth applications that

change quickly [1]. The idea that a network's control operations

should be kept distinct from its forwarding functions became the

foundation of the SDN design. This would make it simpler to

directly program the network control and abstract forwarding

devices for services and network applications [2, 3].

• Easy to program: Since the control function of the

forwarding device has been taken away, the network's

control operation can be directly programmed.

• Agile: The network administrator can change network

traffic on the fly to meet different management needs since

control is separated from the infrastructure underneath.

• Centralized management: Because the network's brain

(controller) is logically centralized and appears as a single

switch to the application and policy engines, it has a global

view of the entire network.

• Employing dynamic SDN programs, network

administrators may rapidly manage, modify, protect, and

enhance network resources with SDN.

SDN is an emerging network paradigm that enables current

network architecture constraints to be overcome; it is

characterized as a foursome-pillar network architecture [4] . In a

distinct data and control plane, routing decisions are flow-based

rather than destination-based, the control logic is handled by an

external entity known as the SDN Controller, and the network

may be programmable through software applications running on

top of the SDN Controller. According to the examination of the

relevant literature, an attempt was made to compare the existing

SDN controllers. The SDN concept and its technical

components were thoroughly analysed in [5]. However, this

assessment was not intended to be a comparative analysis of

controllers from a commercial standpoint. Referring to aspects

such as the difficulty of getting started, the Application Program

Interface (APIs) that are supported, the accessibility of

documentation, and the version of Openflow, among other

factors, conducted a comparative analysis of SDN controllers

based on a systematic study. Unfortunately, this work does not

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

38

do a comparative categorization of the offered controllers, nor

does it emphasize the market viewpoint, which is crucial to the

acceptability of any technology [6, 7]. Give a comparison of

SDN controllers based on characteristics however, they do not

perform a market-oriented comparison, such as programming

language, documentation, modularity, and performance. This

paper's primary contribution is a comparative analysis of the

existing SDN controllers and their primary characteristics,

taking into account not only functional and technical aspects,

nevertheless, but market adoption, documentation availability,

and OpenFlow support are also all-important factors. As a result,

we provide a quantitative and qualitative comparison of the

current top eight SDN controllers from both academic and

industry viewpoints.

II. SDN ARCHITECTURE

Based on the prior SDN description, SDN components may

be characterized as a collection of the separate data layers,

control layers, and application layers that reflect the SDN

architecture, as shown in Fig. 1, each of which has its own

functionality and can interact through open standard interfaces.

These layers were then depicted using a bottom-up approach [8].

Fig. 1. Fundamental SDN components

A. Data Plane

This plane provides a description of the forwarding devices,

which include switches and routers, in addition to a set of

instructions that may be given via an application program

interface (API). SDN network devices function similarly to

traditional network devices, except those packets are forwarded

based on a higher plane decision. This signifies that control is

no longer delegated to an external party and is now logically

centralized. The data plane and the control plane are connected

through a standard interface (OpenFlow). In other words, open

and standard interfaces are used to build the network brain

(control) and applications (conceptually). The controller may

use this interface to dynamically setup various forwarding

devices. For traffic processing logic in SDN data plane

forwarding devices, an API for interacting with the controller,

an abstraction layer, and a traffic (packet) processing function

will be implemented as software in virtual switches and as

hardware in physical switches [9]. The abstraction layer is made

up of one or more flow tables, and its main function is to enable

the device to decide what to do with the next packet based on

its contents. The packet may be routed to a particular switch

port, flooded to all ports, or dropped entirely [10]. A flow table

in an open flow switch is a data structure placed in a high-speed

data plane data structure. It provides information about the

forwarding and packet handling behaviour of the open flow

switch. There are one or more flow entries in an open flow

table, each with a number of components. A flow table with

three entries (match fields, action, and priority), as well as a

counter and timer [11, 12].

B. Control Plane

SDN controller, also known as Network Operating System

(NOS), is the name given to the control plane in SDN

architecture. Due to the fact that the controller is connected to

all devices that perform forwarding in the bottom plane,

management of the network exchange moves from distributed

to centralized [2]. The controller's primary functions are as

follows:

• Provide the applications plane with an abstraction

view of the underlying infrastructure so they can link

with devices that use the SDN (switches, routers).

• Execute the directives of the administration (load

balancing, forwarding, and routing).

• Command and control all the devices that make up the

network's data plane [13].

Because malfunctioning nodes are linked to the controller,

the controller's logical location assists in the resolution of many

distributed issues, such as quicker reactions to node or link

failures. Because the controller has a full picture of the whole

network, loop avoidance is substantially easier. Depending on

the programming language used for implementation, there are

several kinds of SDN controllers, such as the pox controller,

which is implemented in the Python language, the flooding light

controller, which is developed in the Java programming

language, and even the NOX controller, which could use the C

programming language. They're all open-source controllers,

however, there are also commercial ones like HP and NEC [14].

C. SDN Application Layer

A programmable platform provided by SDN technology that

enables users to build SDN applications for routing management

and resolving critical network issues. Network applications

communicate with the controller using an API known as the

northbound interface in SDN architecture. These applications'

primary function is to manage traffic within network devices by

modifying flow entries via the southbound interface [15].

III. RELATED WORK

Many research aimed to compare SDN controllers. One of

the first to do a comparison analysis of SDN controllers,

concentrating just on controller performance in [16]. (NOX-MT,

Beacon, and Maestro). "Other controllers, such as POX,

FloodLight, Ryu, and OpenDaylight, have subsequently taken

their place." virtualization, TLS support, open-source, GUI,

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

39

interfaces, RESTful API, documentation, productivity, platform

support, modularity, OpenFlow support, age, and OpenStack

Neutron support are among the criteria used in the research [17].

The modified AHP was used to evaluate five controllers (Ryu,

POX, Floodlight, OpenDaylight and Trema), and "Ryu" was

picked depending on their requirements, as the appropriate

controller. Changing the stated scale, on the other hand, would

result in a different conclusion. Advanced research on

OpenFlow Controllers in SDN was conducted in this work [18].

The efficacy of NOX, Beacon, POX, Mul, Floodlight, Ryu, and

Maestro which are commonly used SDN controllers, is

compared. The authors utilized a program named HCP ROBE.

They discovered that the evaluated controllers have some

security issues, according to the results of throughput tests

conducted under normal workload settings, Beacon is the

controller with the best performance. As new controllers are

released, this comparison must be updated to incorporate these

controllers as well as additional controller functionality. The

researcher examines two functioning styles in [19, 20], proactive

and reactive. The proactive model performs better than the

reactive mode because the rules are loaded to the switch at the

start of the proactive mode, rather than each time the switch

receives a packet with no matching rule in its flow table in the

reactive mode. While this comparison illustrates an essential

component of performance, it is insufficient to reach a decision

about which controller is the best feature. When creating a new

controller, [21] conducts another research that takes into account

more factors. When developing a new controller, there are two

distinct kinds of architectures that need be taken into

consideration: shared queue with adaptive batch, and static

partitioning with static batching. When compared to Maestro,

NOX-MT, and Floodlight, Beacon, which uses static batching,

did the best in the tests. Due to its adaptive batching design,

Maestro, on the other hand, has the best latency records. As a

consequence, the architecture selected is based on the behavior

of the required controller with respect to its application domain.

The programming languages used to develop the controllers are

crucial since they are software-based. According to [22], the

programming language that is used has an effect on the

portability of the controller as well as its performance. [Citation

needed] The authors believe that Java is the best choice since it

can handle many threads and can be used on several operating

systems. Python suffers from speed and stability concerns when

it comes to multithreading, in contrast to C and C++, which have

memory management constraints. The runtime platform is used

by the network programming languages (compatibility with

Linux is not supported).As a consequence, they demonstrate that

among a variety of controllers (Maestro, POX, NOX, Ryu,

Floodlight), the java-based Beacon has the best performance.

The fact that these languages are still used today shows that they

each have unique characteristics that haven't been replaced. As

a result, the issue of software aging is raised in [23]. To assure

the study's impartiality, the main issue investigated was a

memory leak, and the evaluation was carried out using two

different controllers that were based on Java (Beacon and

Floodlight). The findings showed that Beacon outperformed

Floodlight in terms of memory utilization. In this paper, we will

examine the most popular open-source controllers based on a

range of factors. This comparison is carried out with the

assistance of a variety of controllers, both old and modern. The

results of this comparison will make it much simpler to choose

the most suitable controller for a certain application domain.

IV. SDN CONTROLLER FUNCTIONAL COMPONENTS

It's difficult to categorize SDN controllers because there are

various criteria that can be used, some of which are mutually

exclusive. As a result, the findings of this study are intended to

enhance market and academic acceptance of SDN controllers.

Since each controller design has a unique use case, its use is

contingent not only on its ability but also on the cultural

adaptation of the organization [24-26] .

V. ABILITIES OF SDN CONTROLLER

Management and re-programmability of networks, and

data/control plane separation are SDN's key goals. The

controller's components and capabilities drive a centralized

model that achieves these goals. The capabilities of an SDN

controller will be described in depth in the following

paragraphs. The controller's role and capabilities increased as

SDN progressed. To provide enterprises with more compact

and effective solutions, basic qualities have been upgraded and

new ones have been introduced. An SDN controller's

capabilities include the following:

A. Efficiency

Efficiency refers to performance, security, and scalability.

It's ideal if a controller can cover these three characteristics in

the most efficient manner possible. Performance and scalability

are terms used in the literature to define a controller's reaction

time and the number of flows it can manage. This is a crucial

trait regardless of the use case. Security may refer to a variety

of functions that a controller should do in order to meet the

ever-increasing number of standards. More controller

implementations and versions are becoming available, and

comparative studies on controller efficiency are becoming more

important.

B. Support from the south

The method a controller manipulates network devices to

provide optimum traffic flow has previously been described as

southbound support. As was said before, there are a variety of

southbound protocols that may be implemented, with

OpenFlow being the most common of them. Every OpenFlow

controller need to have the capacity to handle field matching,

network discovery via the use of the Link Layer Discovery

Protocol (LLDP), and other key features. Not only are the

features of the protocol something that must be taken into

consideration by implementers of southbound support, but also

possible extensions, future versions, and other variables. For

instance, in the case of OpenFlow, the option to communicate

via IPv6 was left out of OpenFlow v1.0 but was included to the

OpenFlow v1.3 standard [27].

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

40

C. Support for the Northbound

Northbound APIs offer network abstraction and

programmability for customer-facing systems and applications.

It's important to install a controller to handle Layer 2 and 3 and

4-7 communications. The controller should support OpenStack

orchestration [28]. The controller must support vendor-specific

protocols. SDN applications include firewalls, load balancers,

and orchestration platforms like OpenStack. These applications

may include traffic engineering or data collecting tools for

network administration [29].

D. Monitoring

Another controller feature is network monitoring. The

controller can discover network faults and simplify

troubleshooting by using protocols (such as OpenFlow) and

associated tools. The controller's benefits include thorough

flow monitoring (rather than random sampling), monitoring of

certain traffic classes, and so on. Standard monitoring protocols

and procedures should be supported by the controller so that the

data may be integrated with other management [30, 31].

E. Virtualization of Networks

The virtualizing network is the process of creating logical

and virtual networks that are independent of the hardware that

supports them. Virtualization includes OSI Layers 2-3 (routing)

and 4-7 (load-balancing).Virtual LANs (VLANs) and Virtual

Routing and Forwarding (VRF) are two instances of network

virtualization that have been in use for decades (VRF) [26]. The

preceding approaches are deemed restricted in scope and utility

due to fast changes in network capacity, performance

requirements, and other factors. SDN controllers simplify the

end-to-end deployment of network virtualization, allowing

enterprises to dynamically establish virtual networks and

satisfy stringent criteria [32].

F. Flexibility

Another need a controller must meet is flexibility. On the one

hand, it is necessary to support a wide range of applications.

Controller apps, on the other hand, should employ a

programming paradigm and uniform framework to guarantee

that open APIs are consistent and easy to consume. This is

critical for a variety of reasons, including troubleshooting and

system integration [33, 34].

VI. METHODOLOGY

We followed the methods below to determine the attributes

of the controllers. In the initial step, we looked for articles from

journals, conferences, and workshops that have already

discussed such controllers. If we discover a certain attribute and

its value, we enter that information into the table. Only the

websites of each controller were searched in the second step. If

we located the properties and their values on the website, we

inserted them into the table. This stage aided in locating more

resources, such as published papers, other websites,

conferences, and blogs. Technical speeches from conferences

and workshops were listened to in the third step. The attributes

and their values are included in the table based on the speeches

and their accompanying presentations and papers published.

The fourth phase involved looking at technical blogs about

controllers. During the taking of notes, the rate of reaction in

the blogs was also valued. In order to avoid developers from

giving biased information, the attributes and their values have

been confirmed and evaluated under certain conditions by

comparing information from other sources.

VII. CONTROLLER INVESTIGATION

This article analyzes the eight most widely used open-

source controllers: ONOS, POX, NOX, Ryu, Beacon, Maestro,

FloodLight, and Trema [35]. Other SDN controllers like

FlowER, MUL (C), NOX, Jaxon , NDDI-OESS , NodeFlow,

and ovs-controller have not been evaluated because they are

either deprecated, poorly documented certain controllers are

excluded because they are designed to perform specific

functions [16]. RouteFlow, Flowvisor, SNAC, Reasonance, and

Oflops are other examples.
• POX is a python-based SDN controller derived from

the NOX controller that is used to research SDN

debugging, network virtualization, controller design,

and programming paradigms [36].

• ONOS aims to "produce the Open Source Network

Operating System that will enable service providers to

build authentic Software-Defined Networks." Its first

version, Avocet, became open-source in 2014.

• NOX (2009), originally created by Nicira Neworks,

was the first SDN Controller. Concurrently, the first

version of the OpenFlow protocol was published.

Consequently, the first controllers to be presented

were created using the OpenFlow protocol [37].

• Floodlight is a Java-based OpenFlow controller with

multiple threads that was originally based on the

Beacon implementation. In March 2016, its last

version came out. It is meant to be a place where many

different network applications can run [17].

• Ryu (Japanese for "Flow") is a component-based SDN

controller backed by NTT. Ryu has a predefined set of

components. These components are modifiable,

extensible, and combinable in order to create a custom

controller application [38].
• Beacon is a Java-based open-source OpenFlow

controller that was created in 2010. It looked at new

approaches to build OpenFlow controllers, with an

emphasis on making them simple to use, quick, and

capable of starting and stopping both new and existing

applications at runtime [39-41].

• Maestro is an operating system for coordinating

network control applications that was introduced in

2010 as an OpenFlow controller. Java was used to

write it [41-44]. A new component may be developed

using any programming language.
• Trema is supported by NEC laboratories, and its main

design goals are code readability and performance.

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

41

Ruby is a programming language that is used to

improve efficiency. "C" is used as a compiler language

to improve performance [39].

VIII. RESULTS OF THE COMPARISON

Comparisons were made between the controllers in terms of

their available interfaces, support for virtual switching,

Graphical User Interface (GUI), support for a programming

language, modularity, operating system support, maturity, TLS

support, and OpenStack networking support, as well as their

productivity in terms of the speed at which they can write codes,

the performance of their code, and the performance of their

code. Table I depicts the outcome of the comparison. It may be

inferred that none of the controllers are ideal when all of their

qualities are considered.

TABLE I. ATTRIBUTES COMPARISON OF THE MOST WIDELY USED OPEN-SOURCE SDN CONTROLLERS

Controller

Features

ONOS NOX POX Ryu Beacon Mestro
Flood-

Light
Trema

Programming

Language
Java C++ Python Python Java Java Java

C

Ruby

Year 2014 2009 2013 2013 2010 2010 2013 2011

GUI
Web

based
Python

Python +

QT4

Y

(initial

phase)

Web

based
N/A

Web

based

Java

N/A

Documentation Good Medium Poor Medium Poor Poor Medium Poor

Modularity High Poor Poor Poor Poor Poor Medium Medium

Distributed/

Centralized
D C C C C C C C

TLS Support Yes Yes Yes Yes Yes Yes Yes Yes

Platform

Support

Linux
Mac

Windows

Linux
Linux
Mac

Windows

Linux
Linux
Mac

Windows

Linux
Mac

Windows

Linux
Mac

Windows

Linux

Open Stack

Networking
Weak Medium No Strong Medium Medium Medium Weak

IX. CONCLUSION

A study was conducted on SDN controllers to determine

which eight controllers are now the most effective based on

their level of deployment and use. The attributes of those

eight controllers, including their modularity, productivity,

and accessible interfaces, have been gathered via analysis of

the controllers. After analyzing "Ryu" against our needs and

the characteristics of the top eight controllers, we determined

that "Ryu" is the most suitable option. The work that has been

given may serve as a model for SDN developers or

researchers to follow in order to assist ease the process of

selecting an SDN controller. In the work that has to be done

in the future, an ontology will need to be defined not only for

the requirements of the business but also for the

characteristics that will be offered by the controllers. This

will ensure that no intermediary translation will be necessary

for the matching process. In addition, it is possible to confirm

the selection of the finest SDN controller by consulting

knowledgeable SDN controller users. These users include

specialists from businesses, data centers, and other types of

facilities. In addition, feedback from users may be requested

in order to determine the order in which the criteria are

ranked.

ACKNOWLEDGMENTS

The authors would like to thank the University of Baghdad

and the Informatics Institute for Post Grad, for their help and

encouragement in performing this work.

REFERENCES

[1] Li, H., Li, P., Guo, S., & Nayak, A. (2014). Byzantine-resilient

secure software-defined networks with multiple controllers in

cloud. IEEE Transactions on Cloud Computing, 2(4), 436-

447.

[2] Waheed, S. R., Adnan, M. M., Suaib, N. M., & Rahim, M. S.

M. (2020, April). Fuzzy logic controller for classroom air

conditioner. Journal of Physics: Conference Series (Vol.

1484, No. 1, p. 012018). IOP Publishing.

[3] Salim, A. A., Ghoshal, S. K., Suan, L. P., Bidin, N., Hamzah,

K., Duralim, M., & Bakhtiar, H. (2018). Liquid media

regulated growth of cinnamon nanoparticles: Absorption and

emission traits. Malaysian Journal of Fundamental and

Applied Sciences, 14(3-1), 447-449.

[4] Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C.

E., Azodolmolky, S., & Uhlig, S. (2014). Software-defined

networking: A comprehensive survey. Proceedings of the

IEEE, 103(1), 14-76.

[5] Dixit, A., Hao, F., Mukherjee, S., Lakshman, T. V., &

Kompella, R. (2013). Towards an elastic distributed SDN

controller. ACM SIGCOMM computer communication

review, 43(4), 7-12.

[6] Khattak, Z. K., Awais, M., & Iqbal, A. (2014, December).

Performance evaluation of OpenDaylight SDN controller.

2014 20th IEEE International Conference on Parallel and

Distributed Systems (ICPADS) (pp. 671-676). IEEE.

[7] Salim, A. A., Bidin, N., Ghoshal, S. K., Islam, S., & Bakhtiar,

H. (2018). Synthesis of truncated tetrahedral cinnamon

nanoparticles in citric acid media via PLAL technique.

Materials Letters, 217, 267-270.

[8] Chekired, D. A., Khoukhi, L., & Mouftah, H. T. (2017).

Decentralized cloud-SDN architecture in smart grid: A

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

42

dynamic pricing model. IEEE Transactions on Industrial

Informatics, 14(3), 1220-1231.

[9] Perrot, N., & Reynaud, T. (2016, March). Optimal placement

of controllers in a resilient SDN architecture. 2016 12th

International Conference on the Design of Reliable

Communication Networks (DRCN) (pp. 145-151). IEEE.

[10] Raghunath, K., & Krishnan, P. (2018, July). Towards a secure

SDN architecture. 2018 9th International Conference on

Computing, Communication and Networking Technologies

(ICCCNT) (pp. 1-7). IEEE.

[11] Kleinrouweler, J. W., Cabrero, S., & Cesar, P. (2016, May).

Delivering stable high-quality video: An SDN architecture

with DASH assisting network elements. Proceedings of the

7th International Conference on Multimedia Systems (pp. 1-

10).

[12] Salim, A. A., Bakhtiar, H., Krishnan, G., & Ghoshal, S. K.

(2021). Nanosecond pulse laser-induced fabrication of gold

and silver-integrated cinnamon shell structure: Tunable

fluorescence dynamics and morphology. Optics & Laser

Technology, 138, 106834.

[13] Bakshi, K. (2013, March). Considerations for software

defined networking (SDN): Approaches and use cases. 2013

IEEE Aerospace Conference (pp. 1-9). IEEE.

[14] Benzekki, K., El Fergougui, A., & Elbelrhiti Elalaoui, A.

(2016). Software‐defined networking (SDN): A Survey.

Security and Communication Networks, 9(18), 5803-5833.

[15] Li, Y., & Li, J. (2014, November). MultiClassifier: A

combination of DPI and ML for application-layer

classification in SDN. The 2014 2nd International Conference

on Systems and Informatics (ICSAI 2014) (pp. 682-686).

IEEE.

[16] Waheed, S. R., Suaib, N. M., Rahim, M. S. M., Adnan, M. M.,

& Salim, A. A. (2021, April). Deep Learning Algorithms-

based Object Detection and Localization Revisited. In Journal

of Physics: Conference Series (Vol. 1892, No. 1, p. 012001).

IOP Publishing.

[17] Rowshanrad, S., Abdi, V., & Keshtgari, M. (2016).

Performance evaluation of SDN controllers: Floodlight and

OpenDaylight. IIUM Engineering Journal, 17(2), 47-57.

[18] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov and R.

Smeliansky. (2013). Advanced study of SDN/OpenFlow

controllers. Proceedings of the 9th Central & Eastern

European Software Engineering Conference in Russia, ACM.

1.

[19] M.P. Fernandez. (2013). Comparing openflow controller

paradigms scalability: reactive and proactive. Advanced

Information Networking and Applications (AINA), 2013 IEEE

27th International Conference on. 1009-1016.

[20] Abbas, S. I., Hathot, S. F., Abbas, A. S., & Salim, A. A.

(2021). Influence of Cu doping on structure, morphology and

optical characteristics of SnO2 thin films prepared by chemical

bath deposition technique. Optical Materials, 117, 111212.

[21] S.A. Shah, J. Faiz, M. Farooq, A. Shafi and S.A. Mehdi.

(2013). An architectural evaluation of SDN controllers.

Communications (ICC), 2013 IEEE International Conference

on. 3504-3508.

[22] D. Erickson. (2013). The beacon openflow controller.

Proceedings of the second ACM SIGCOMM workshop on Hot

topics in software defined networking, ACM, 2013. 13-18.

[23] Salim, A. A., Ghoshal, S. K., & Bakhtiar, H. (2021). Growth

mechanism and optical characteristics of Nd: YAG laser

ablated amorphous cinnamon nanoparticles produced in

ethanol: Influence of accumulative pulse irradiation time

variation. Photonics and Nanostructures-Fundamentals and

Applications, 43, 100889.

[24] Khondoker, R., Zaalouk, A., Marx, R., & Bayarou, K. (2014,

January). Feature-based comparison and selection of Software

Defined Networking (SDN) controllers. 2014 World Congress

on Computer Applications and Information Systems

(WCCAIS) (pp. 1-7). IEEE.

[25] Paliwal, M., Shrimankar, D., & Tembhurne, O. (2018).

Controllers in SDN: A review report. IEEE access, 6, 36256-

36270.

[26] Salim, A. A., Bidin, N., & Islam, S. (2017). Low power CO2

laser modified iron/nickel alloyed pure aluminum surface:

Evaluation of structural and mechanical properties. Surface

and Coatings Technology, 315, 24-31.

[27] Hathot, S. F., Abbas, S. I., AlOgaili, H. A. T., & Salim, A. A.

(2022). Influence of deposition time on absorption and

electrical characteristics of ZnS thin films. Optik, 260,

169056.

[28] Salim, A. A., Bakhtiar, H., Bidin, N., & Ghoshal, S. K. (2018).

Antibacterial activity of decahedral cinnamon nanoparticles

prepared in honey using PLAL technique. Materials Letters,

232, 183-186.

[29] Wang, S. Y., Chiu, H. W., & Chou, C. L. (2015, April).

Comparisons of SDN OpenFlow controllers over EstiNet:

Ryu vs. NOX. ICN (Vol. 256).

[30] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, Wu Chou.

(2014). A roadmap for traffic engineering in SDN-OpenFlow

networks. Elsevier Computer Networks, 71, 1-30.

[31] Salim, A. A., Ghoshal, S. K., Shamsudin, M. S., Rosli, M. I.,

Aziz, M. S., Harun, S. W., ... & Bakhtiar, H. (2021).

Absorption, fluorescence and sensing quality of Rose Bengal

dye-encapsulated cinnamon nanoparticles. Sensors and

Actuators A: Physical, 332, 113055.

[32] Waheed, S. R., Rahim, M. S. M., Suaib, N. M., & Salim, A.

A. (2023). CNN deep learning-based image to vector

depiction. Multimedia Tools and Applications, 1-20.

[33] Hyojoon Kim, Nick Feamster. (2013). Improving network

management with software defined networking. IEEE

Communications Magazine.

[34] Salim, A. A., Bidin, N., Bakhtiar, H., Ghoshal, S. K., Al

Azawi, M., & Krishnan, G. (2018, May). Optical and structure

characterization of cinnamon nanoparticles synthesized by

pulse laser ablation in liquid (PLAL). Journal of Physics:

Conference Series (Vol. 1027, No. 1, p. 012002). IOP

Publishing.

[35] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam

Nguyen, Katia Obraczka, and Thierry Turletti. (2014). A

survey of software-defined networking: past, present, and

future of programmable networks. Communications surveys

and tutorials. IEEE Communications Society, Institute of

Electrical and Electronics Engineers, 16(3), 1617-16342.

[36] Andri, C., Alkawaz, M. H., & Waheed, S. R. (2019, June).

Examining effectiveness and user experiences in 3d mobile

based augmented reality for msu virtual tour. 2019 IEEE

International Conference on Automatic Control and

Intelligent Systems (I2CACIS) (pp. 161-167). IEEE.

[37] Kaur, S., Singh, J., & Ghumman, N. S. (2014, August).

Network programmability using POX controller. ICCCS

International Conference on communication, Computing &

Systems, IEEE (Vol. 138, p. 70). sn.

[38] Waheed, S. R., Saadi, S. M., Rahim, M. S. M., Suaib, N. M.,

Najjar, F. H., Adnan, M. M., & Salim, A. A. (2023).

Melanoma skin cancer classification based on CNN deep

learning algorithms. Malaysian Journal of Fundamental and

Applied Sciences, 19(3), 299-305.

[39] Islam, M., Islam, N., & Refat, M. (2020). Node to node

performance evaluation through RYU SDN controller.

Wireless Personal Communications, 112(1), 555-570.

Mohammed Mousa Rashid & Nadia Adnan Shiltagh Al-Jamali / IJIC Vol. 13 No. 1-2 (2023) 37-43

43

[40] Aldhuhaibat, M. J., Amana, M. S., Aboud, H., & Salim, A. A.

(2022). Radiation attenuation capacity improvement of

various oxides via high density polyethylene composite

reinforcement. Ceramics International, 48(17), 25011-25019.

[41] Alluhaybi, H. A., Ghoshal, S. K., Shamsuri, W. W., Alsobhi,

B. O., Salim, A. A., & Krishnan, G. (2019). Pulsed laser

ablation in liquid assisted growth of gold nanoparticles:

Evaluation of structural and optical features. Nano-Structures

& Nano-Objects, 19, 100355.

[42] Cai, Z., Cox, A. L., & Ng, T. S. (2010). Maestro: A system for

scalable openflow control.

[43] Kadhim, K. A., Najjar, F. H., Waad, A. A., Al-Kharsan, I. H.,

Khudhair, Z. N., & Salim, A. A. (2023). Leukemia

classification using a convolutional neural network of aml

images. Malaysian Journal of Fundamental and Applied

Sciences, 19(3), 306-312.

[44] Waheed, S. R., Sakran, A. A., Rahim, M. S. M., Suaib, N. M.,

Najjar, F. H., Kadhim, K. A., Salim, A. A. & Adnan, M. M.

(2023). Design a crime detection system based fog computing.

