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Abstract—Active learning can help reduce the labelling burden in 

training deep object detection models by strategically selecting 

the most informative data points for labelling from unlabelled 

data. Different approaches to this task have been proposed in 

recent years, with differences often found in their approaches to 

the specific components. Consequently, this study breaks down 

active learning methods into their individual components and 

examines the diverse strategies associated with each intending to 

shed light on areas that have not yet been explored in depth. 

Doing so, the study offers valuable insights into potential 

research directions in this area. 

 

Keywords—Active learning, object detection, data-efficient 

learning, systematic review, neural networks 

 

I. INTRODUCTION 

 

Deep learning models require large amounts of labelled 

data to generalize well. However, labelling costs often make 

gathering such large amounts of labelled data too expensive 

and economically infeasible. This traditional approach to deep 

learning falls under passive learning, where the datapoints to 

label are hand-picked by humans. It does not take into account 

the model's current knowledge, hence why it is passive. As an 

alternative, active learning is a method of learning that puts the 

model in the loop of selecting the best datapoints for labelling, 

incorporating the model's current knowledge into the selection 

process. 

There are two broad approaches to active learning: 

sampling-based approaches and query synthesis approaches. 

Sampling-based approaches can be divided into two types, 

each having its own advantages and disadvantages: pool-based 

active learning and stream-based active learning. Pool-based 

active learning provides a way to choose the most informative 

data points to label from a pool unlabelled data such the model 

has the highest gain in performance. This is as opposed to 

stream-based active learning where data is being streamed 

continuously, such as in online learning scenarios. Meanwhile, 

query synthesis involves not selecting but generating synthetic 

data through the learner that ought to be labelled. Although 

active learning has seen a lot of use in the domain of image 

classification, active learning for object detection still largely 

remains an active area of research, particularly due to the nature 

of object detection algorithms. In this study, the literature 

concerning active learning for 2D object detection is reviewed 

and then analyzed based on their components. The division into 

components sets it apart from other systematic review studies in 

this area. 

 

II. RESEARCH QUESTIONS 

 

As highlighted previously, the review will analyze the 

components of active-learning methods proposed, and hence the 

study will be answering the following research questions: 

1. What are the different components of active learning 

methods for object detection? 

2. What components of active learning methods lack 

diversity in terms of approaches? 

 

III. RESEARCH METHODOLOGY 
 

For this study, relevant works in active learning for 2D 

object detectors were discovered through the use of keyword 

searches in prominent scholarly databases. The keywords used 

in this study are listed in Table I.  
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As depicted in the table, the search terms for active learning 

methods are combined with the search terms for object 

detection so that the methods that are only in the domain of 

object detection are extracted. Note that no special keyword to 

limit search results to 2D object detection was used at this level 

as it is not consistently referenced across the literature. 

Similarly, pool-based active learning was also not specified 

among the keywords. Furthermore, the search was limited to 

abstract as any work that made significant contribution to the 

above ought to have these keywords in their abstract. Finally, 

the search was conducted in: Web of Science, Scopus and 

arXiv. 

 
TABLE I.  BOOLEAN GROUPING OF SEARCH TERMS 

 

Search Terms 

Group 

Keywords Operation with next 

string 

Active learning active learning AND 

Object detection object detection OR 

object detector OR 

object detectors 

 

 

TABLE II.  NUMBER OF RESULTS RETURNED BY EACH DATABASE 

 

Search Database  

No. of 

papers 

found 

Chosen based on 

inclusion/exclusion 

criteria 

Active learning 

methods for object 
detection 

Web of Science 137 23 

arXiv 400 

Scopus 244 

 

TABLE III.   INCLUSION AND EXCLUSION CRITERIA FOR SCREENING 
 

Inclusion Criteria • Must be in the domain of 2D object 

detection. 

• Must be a general method. 

• Must have extensive benchmark results 

of their method on at least Microsoft 

Common Objects in Context (MS 

COCO) and/or PASCAL VOC. 

• Must be from a reputable journal or 

conference. 

• Must be a theoretical paper proposing a 

new method. 

Exclusion Criteria • Must not be in 3D object detection. 

• Must not be primarily a weakly-

supervised, semi-supervised, 
unsupervised method. 

• Must not simply applying an existing 

method to a particular problem. 

 

 

These databases provide comprehensive coverage of high-

quality research. Web of Science and Scopus are well-known 

databases indexing publications from peer-reviewed journals 

and conference papers, while arXiv, on the other hand, is a 

popular repository for preprints, many a times containing 

research that are still under review prior to publication. 

Moreover, 317 results (~40%) from the search were duplicates, 

as shown in Fig. 1. This significant overlap indicates that the 

search was exhaustive and additional databases were 

unnecessary. 

As for the execution of the query, Web of Science and 

Scopus had graphical interface that allowed the required 

grouping of terms, but for arXiv, the API was used to perform 

the search as grouping boolean operations was not possible 

through their search engine user interface. 

 
 

Records identified from: 
Web of Science (n = 137) 

Scopus (n = 244) 

arXiv (n = 400) 

Records removed before 
screening: 

Duplicate records removed  
(n = 317) 
Records marked as ineligible 
by automation tools (n = 0) 
Records removed for other 
reasons (n = 320) 

Records screened 
(n = 189) 

Records excluded 
(n = 166) 

Reports sought for retrieval 
(n = 25) 

Reports not retrieved 
(n = 0) 

Reports assessed for eligibility 
(n = 25) Reports excluded: 

Not for object detection (n = 
2) 

 

Reports of included studies 
(n = 23) 

Identification of studies via databases and registers 
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Fig. 1. PRISMA Flow Diagram 

 
 

IV. LITERATURE SEARCH AND SELECTION 

 

The number of works that resulted from using the keyword 

search is summarized in Table II. The works were then further 

filtered using the inclusion and exlusion criteria mentioned in 

Table III. The PRISMA diagram indicating the flow of the 

literature search is shown in Fig. 1. 

 

V. ACTIVE LEARNING METHOD COMPONENT ANALYSIS 

 

In this section, the different components of active learning 

methods are analyzed, discussing the notable approaches taken 

by the works to achieve the objectives associated with each 

component. 

 

A. Image, Region and Instance Level Query Strategies 

 

Object detection entails identifying multiple instances of 

objects within an image. Consequently, active learning 

methods for object detection often assess informativeness 

based on metrics obtained at the instance level. However, since 

labelling typically occurs for the entire image rather than 

individual objects, these metrics are usually aggregated to 

determine informativeness at the image level. Most proposed 

active learning methods follow this approach [1], [2], [3], [4], 

[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. This 

paradigm, however, has been challenged as being inefficient as 
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the limited labelling budget gets wasted annotating instances 

that may or may not be informative. 

The first attempt at instance-level querying was made by  

[17] where they queried only for the most uncertain instances 

in an image and used pseudo-labels to compensate for the 

missing labels for instances that were excluded from query in 

the selected image. More recently, [18] demonstrated that 

existing image-level query methods can be easily surpassed by 

querying for the most crowded boxes, reinforcing the notion 

that image-level query strategies do not effectively sample the 

best possible dataset for training. They introduced a new box-

level active learning method that combines pseudo-labels with 

a committee based acquisition function, significantly 

outperforming existing methods. However, instance level 

querying is prone to false negatives as querying for a portion of 

an image naturally leads to confusion when the queried region 

contains multiple overlapping objects. Arguing this point, [19] 

and [20] introduced region-level querying (ReAL) strategies 

that aim to strike a balance between coarse image-level 

strategies and fine-grained instance approaches. [19] advocate 

for querying fixed-size regions, while [20] adopt a dynamic 

approach where the region expands to include nearby uncertain 

instances. On the other hand, [21] proposed a novel decoupled 

localization and recognition query strategy (DeLR) that tries 

alleviating some of the issues associated with instance level 

querying by arguing that instances whose pseudo-labels have 

confident localization predictions likely also would have been 

classified correctly, and hence do not require corrections.  
 

TABLE IV.   ACTIVE LEARNING METHODS WITH THEIR COMPONENTS 

 

Year Paper Query Type Scoring Function 

Type 
Aggregation 

Function 
Diversity 

Sampling 
Class-

balancing 
Sampling 

Strategy 
Retraining 

Strategy 
Initial 

Set 

2018 [1] Image Uncertainty Sum* Batched sampling 
Simple 
reweighting 

Top-k Scratch Random 

2018 [7] Image Uncertainty Sum Not used Not used Top-k Scratch Random 

2019 [13] Image Expected model 
change. 

Not applicable 

Image level 

Not used Not used Top-k Scratch Random 

2020 [17] Instance Multiple Not applicable Not used Not used. Top-k Scratch Random 

2020 [11] Image Uncertainty Average Not used 
Weighted 
loss 

Top-k 
Continuous 
fine-tuning 

Random 

2020 [4] Image Uncertainty* Sum* Core-set* Not used Top-k Scratch Random 

2020 [22] Image Uncertainty w/ 
diversity 

Contextual 
Diversity (novel) 

Part of Contextual 
Diversity 

Not used Top-k Scratch Random 

2021 [3] Image 
Uncertainty w/ 
robustness 

Maximum Not used Not used Top-k Scratch Random 

2021 [15] Image Distribution based Mean* Not used Not used Top-k Scratch Random 

2021 [8] Image Expected gain 
Not applicable 

Image level 

Modified core-set 
+ distance 

Not used. Top-k Scratch Random 

2021 [2] Image Uncertainty Maximum Not used Not used Top-k Scratch Random 

2022 [12] Image Uncertainty ENMS** DivProto** 
Part of 
DivProto 

Top-k Scratch Random 

2022 [14] Image 
Uncertainty w/ 

consistency 
augmentation 

Maximum (min. 
inconsistency) 

Mutual 
information 

Part of 

diversity 
sampling 

Top-k Scratch Random 

2022 [10] Image Uncertainty HUA Not used Not used 
Top-k + 
filtered 

Scratch Random 

2022 [23] Image Uncertainty - 
DCUS** 

Sum CCMS** Not used Top-k Scratch Random 

2023 [6] Image 
Multiple 
uncertainty 

Not applicable Cosine similarity Not used W-Filter** Scratch 
W-
Filter** 

2023 [19] Region Uncertainty Average Not used 
Frequency 

based 
reweighting 

Top-k Scratch Random 

2023 [5] Image 
Uncertainty w/ 
diversity 

Not applicable 

Image level 

Distance of 
object-level 
features 

Not used Top-k Scratch Random 

2023 [18] Instance 
Uncertainty w/ 

consistency 
augmentations 

Not applicable Not used Not used Top-k 

Scratch 
(VOC) 

Fine-tune 
(COCO) 

Random 

2023 [20] Region 
Uncertainty w/ 
diversity 

ReAL** 
Part of 

informativeness 
scoring function 

Not used Top-k Scratch Random 

2023 [16] Image Uncertainty Sum Not used Not used Top-k Scratch Random 

2023  [9] Image LSTM 
Not applicable 

Image level 
Not used Not used MAGRAL** Scratch Random 

2023 [21] Instance Uncertainty Not applicable Not used Not used DeLR** Scratch Random 

* best in ablation. ** novel method introduced by the work. 
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Overall, active learning methods for object detection have 

predominantly focused on creating new image-level query 

strategies, but recent works have shown increased interest in 

proposing region-level and instance-level query methods. 

While it is argued that image-level query methods result in the 

wastage of labelling budgets, it is also true that region and 

instance level methods cause more ambiguity in labelling due 

to their unorthodox nature where the annotator has to provide 

labels for cropped regions of image which increases chances of 

partial labels and false negatives. 

 

B. Informativeness Scoring Function 

 

Active learning strategies utilize a scoring function to 

quantify the informativeness of an instance. The design of this 

scoring function is one of the primary elements that separates 

one proposed method from another. The methods used to 

obtain informativeness score can be classified into four types: 

uncertainty-based, distribution-based, expected model change 

methods [24] and more recently reinforcement-learning based 

methods [9], [22]. 

Most proposed active learning methods for object detection 

are uncertainty-based. Some of the initial uncertainty-based 

methods relied only on the classification uncertainty. [1]  used 

1 vs. 2 method comparing the confidence of the top two 

predictions, [17] utilized the least predicted class probability 

and [12] relied on entropy, [6] tested various redesigned 

uncertainty scoring functions alongside their novel frequency 

based weighting-filter (W-filter), while [22] introduced a 

contextual diversity metric arguing that confusion between 

classes in a given region provided a better measure of spatial 

uncertainty. However, since localization is one of the major 

components of object detection, many of the later uncertainty-

based methods started incorporating measures of localization 

uncertainty into the scoring function. [7] incorporated 

localization uncertainty along with classification uncertainty by 

using localization stability and localization tightness, while 

[23] introduced a category-wise difficulty scaling based on a 

combination of class probabilities and intersection-over-union 

and used it reweight the calculated uncertainties. Some 

methods proposed calculating aleatoric and epistemic 

uncertainty to differentiate between the reducible and 

irreducible type of uncertainty, such as [2] through gaussian 

mixture models and [10] by adding a model evidence head 

inspired by evidential deep learning approaches. 

Moreover, a number of methods relied on robustness or 

consistency to determine uncertainty, essentially constituting a 

sub-class of uncertainty-based methods. For example, [14] 

added localization inconsistency produced to the uncertainty 

calculation, while [3] proposed an augmentation based 

consistency score to measure robustness alongside uncertainty. 

[18] also employed augmentations, but instead used them like 

an input-end committee to measure disagreement and thereby 

quantify the uncertainty. [21] used a cleverer approach by 

training two different heads and using the inconsistency 

between their predictions as a measure of uncertainty. 

Besides single model approaches, predictions from an 

ensemble of models trained are also used to derive the 

informativeness score. [4] tested various scoring functions that 

utilize an ensemble of models and found that mutual 

information with max aggregation provided the best trade-off 

taking into account labelling cost. [11] designed a consensus 

score based on average of minimum IoU for each matching 

Region-of-Interest (RoI) obtained from the ensemble of 

models, but it did not perform better than random sampling. 

[16] proposed a classification committee with a specialized loss 

to maximize the discrepancy between them in order to utilize 

the discrepancy as a measure of uncertainty but showed 

marginal improvements despite the added cost of the approach.  

The second type of informativeness scoring functions that 

are considered distribution-based methods try to capture the 

distribution and thereby the information of an unlabelled set 

through a subset sampled from the unlabelled set. Yuan et al. 

[15] trained adversarial classifiers that are used to compute 

prediction uncertainty to accomplish this for object detectors. 

The third type referred to as expected model change 

methods try to predict the gain a sample from the unlabelled set 

would produce if it were added to the training set. [13] were 

the first to propose such a method by learning to predict the 

loss for each image and hence the associated informativeness. 

Later, working on the same principle, [8] proposed predicting 

the expected gradient reduction and expected error reduction 

for each sample. 

Lastly, some methods have attempted a reinforcement-

learning based approach to selecting the most informative 

images. [22] used their aggregated contextual diversity metric 

as reward to train a Bi-LSTM (bi-directional long short-term 

memory) sampling agent. More recently, [9] argued that 

minimizing uncertainty does not necessarily correspond with 

gain in performance. They introduced MeanAP Guided 

Reinforced Active Learning (MAGRAL) where they used 

reinforcement learning-based to train an LSTM model which 

acted as a sampling agent to select the best the images to label, 

using mean average precision as the reward which they argued 

was a more natural objective in increasing a model’s 

performance. 

 

C. Aggregation Function 

 

Unlike active learning used in image classification, there is 

usually an additional step in designing an acquisition function 

for active learning with object detectors. This comes from the 

fact that image classification requires image-level labels while 

object detectors require instance-level labels. Due to this, 

within an image, there can be multiple instances with different 

informativeness scores. These scores need to be aggregated to 

get an image-level score because sample selection is typically 

done for the whole image. That is, the whole image is selected 

to be labelled, not just one instance. 

[1] was the first to propose sum, average and maximum as 

aggregation function for object detection. Later many works 

corroborated the effectiveness of the maximum aggregation 

function such as [4], [7]. [2] empirically showed that maximum 

aggregation for uncertainty-based methods were better than 

any other form of aggregation. 

Although, sampling new data to annotate at the image level 

is the common approach as mentioned in the beginning, 

instance level and region-level sampling has also been shown 
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to be viable. The obvious problem that arises in such settings is 

partially annotated images, as the model would still be training 

of on the whole image, not a particular portion of it holding the 

instance that was sampled. To compensate for missing labels, 

[17] used pseudo-labelling where missing labels are obtained 

from the trained model. However, since these labels may not 

be accurate, they also introduced a dampening factor in the loss 

function to give less weight to these noisy pseudo-labels in the 

calculation of the final loss. Meanwhile, region-level methods 

such as [5] and [20] crafted nuanced aggregation functions, 

incorporating not just uncertainties of the instances involved 

but also diversity by penalizing similarity with other regions in 

the final region level scores. 

Some methods employ multi-step aggregation algorithms, 

usually involving some form of similarity calculation, instead 

of performing a naïve aggregation over all the instances in an 

images. [12] used an entropy-based aggregation method where 

they dropped any instances that were similar to the picked 

instance at every step, while summing the entropy to get the 

image-level score. [10] introduced a novel hierarchical 

uncertainty aggregation (HUA) method to aggregate the 

uncertainties by distributing the predictions and their 

associated uncertainty score at three different hierarchical 

levels, namely: class-level, scale-level and object-level. At 

each level, they use a trivial aggregation function to aggregate 

the uncertainties in those levels separately. They demonstrated 

their aggregation method to achieve better performance than 

indiscriminately using a trivial aggregation function as had so 

far been the case in previous works. 

 

D. Diversity Sampling 

 

Although the informativeness score can help sample images 

with informative instances, it does not guarantee diversity in 

the sampling. Images of a particular class may get sampled 

more than other classes, leading to a data bias. This can be 

because models can also be confidently wrong about a 

prediction, which means informativeness score that rely on 

prediction confidence may incorrectly consider an image to be 

uninformative. To resolve this, many works also incorporate a 

diversity sampling strategy to force acquisition of training data 

that is more diverse. [1] for example, randomly divided the 

unlabelled dataset into batches of 10 images each, so that 

sampling happens on the batch-level based on sum of 

informativeness score aggregated across all the images the 

whole batch, although they warn that this could lead to 

unintended side effects. Meanwhile, [8], [22] utilized diversity 

sampling based on k-Centre-Greedy method. [8] tested both L1 

and L2 norm to calculate distance between samples and found 

L2 distance to be the best, which was also the distance used by 

[22]. [14] used mutual information to remove redundant 

samples. [4] found core-set to be the best strategy for diversity 

sampling in their ablation study, while [8] modified the core-

set strategy by incorporating a distance function based on 

uncertainty and diversity. The aforementioned methods all 

calculated the distances at the image-level. On the other hand, 

[5] proposed calculating the distance using object-level 

features, while [23] utilized the object-level features to create a 

novel metric called Category Conditioned Matching Similarity 

(CCMS) that used the object-level feature similarity as a proxy 

for image-level similarity. Meanwhile [20], given their region-

level approach, used a query-neighbour strategy to calculate 

similarity between different regions. 

Moreover, certain works used their proposed scoring 

function as a metric for similarity. [22] used their class-specific 

confusion metric with Kullback-Leibler (KL) divergence to 

compute pairwise similarity, [6] made use of their W-filter to 

increase diversity and [12] combined their Entropy-based Non-

Maximum Suppression (ENMS) to promote intra-image 

diversity with Diverse Prototype (DivProto) to promote intra-

image diversity. The latter’s method of selecting diverse 

images for labelling was very efficient and did not require pixel 

level pairwise instance comparisons which greatly reduced the 

time complexity. 

 

E. Class Balancing 

 

Apart from diversity sampling, some works also introduced 

class balancing techniques to specifically address performance 

issues for minority classes. [1] used inverse of the posterior to 

weight the informativeness score and [19] also used a similar 

strategy to reweight the uncertainty score. [11] introduced 

active class weighting at the loss level taking the ratio of total 

labels to that of the class in concern. Similarly, [8] argued that 

the loss has more relevance to improving the mean-average 

precision (mAP) than ratio of class labels, and therefore 

applied a loss-based weighting to acquisition function. [12] 

used class balancing to improve inter-class diversity by giving 

more sampling quota to the minority classes. [6] used their 

frequency-based W-filter to weight the informativeness score.  

All in all, explicit class balancing techniques has only been 

employed by a handful of works. It could also be argued that 

explicit class balancing may not be required considering the 

use of diversity sampling which may be able to take care of the 

underrepresented classes. For example, [14] managed to 

alleviate the unbalanced distribution as part of their diversity 

sampling strategy using mutual information, hence avoiding 

the need to craft a special class balancing strategy. 

 

F. Sampling Strategies 

 

Once the unlabelled data has been scored and ranked by an 

acquisition function, there are multiple approaches that could 

be taken for sampling the ranked unlabelled data. [4] tested 

top-K, top-third, top-K/2-bottom-K/2, bottom-K, and they 

found top-K to be the best strategy and bottom-K the worst. 

Although, most work utilize the top-K strategy, some recent 

works have also proposed more nuanced sampling strategies. 

[10] showed that including a certain ratio of filtered out images 

besides top-K had a slight improvement in performance. [6] 

sampled images from each grouped frequency domain through 

their W-filter strategy. [9], owing to their reinforcement 

learning-based approach, used their trained LSTM-based 

sampling agent to sample the best images to label. 

On the other hand, [21] took an unorthodox approach and 

developed a more intricate querying strategy. They first 

obtained the pseudo-labels and then performed a decoupled 

query to the oracle. The first query verified the localization of 
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the pseudo-labels, and then the second query used the first that 

information to again query to verify the classes of the pseudo-

labels whose localization and classification scores were both 

uncertain. Their intuition behind the decoupling was that 

pseudo-labels with high localization scores need not be queried 

for class labels as they found the likelihood of the predicted 

class being correct was high. 

 

G. Retraining Strategy 

 

The literature was divided as to whether each active 

learning cycle should train a new model or fine-tune the model 

from the last cycle. [11] found that fine-tuning was better than 

training from the scratch. However, [24] argued training from 

scratch is better than fine-tuning and tried to compensate for it 

using knowledge distillation to distil knowledge from the 

model in the last active learning cycle. But their test was 

performed on image classification, while [11] specifically 

obtained that result on object detection. The difference in the 

findings could be explained by the work of [25] where the 

authors challenged the assumption that the last trained model 

was better than models from earlier active learning cycles in 

estimating the uncertainty score and demonstrated that 

assumption to be false. They attributed this to the fact that deep 

learning models suffer from example forgetting which can lead 

to degraded performance on a particular class in the next cycle. 

They use correct inconsistency score to keep track of samples 

that are prone to forgetting and determine the best model from 

previous active learning cycles based on mean of correct 

inconsistency and distil knowledge from that using pseudo-

labels. Even though this is a plausible explanation, the work by 

[26] suggests that warm-starting is fundamentally problematic. 

 

H. Initial Set 

 

Most the works on active learning for object detection start 

with a random initial set. [6], however, argued that initial set 

has a significant impact on the effectiveness of active learning 

as they influence the informativeness score which often come 

from the trained model’s predictions. To resolve this, they 

propose a weighting filter that use frequency domain 

information to weight the samples in terms of diversity. They 

argue that samples with diverse frequencies are more 

informative as they carry more edge information. On the 

contrary, [2] found that initial set had minimal impact on the 

performance of their active learning strategy. 

To reconcile the two, one could argue that the effect of 

initial set would depend on the acquisition function used. An 

ideal acquisition function should not be affected by bad model 

predictions. 

 

VI. MAPPING OF LITERATURE 

 

The works selected for the study have been concisely 

mapped based on their approach to each of the components of 

active learning in Table IV. This provides a overview of the 

analysis done which would be referenced to answer the 

research questions of this study. 

VII. DISCUSSION 

 

This section addresses the research questions posed by the 

study, drawing on the literature reviewed. 

 

RQ1: What are the different components of active learning 

methods for object detection? 

 

The analysis in Section V identifies several key 

components of active learning methods. These include a query 

strategy, an informativeness scoring function, and an 

aggregation strategy, particularly for image-level query 

methods. A final sampling strategy is used to glue all these 

components together to produce the dataset to be labelled. 

Additionally, some approaches incorporate a diversity 

sampling function to enhance the variety of acquired data, 

while a handful also use class-balancing techniques to enhance 

the representation of minority classes. Lastly, few works have 

also attempted different training strategies (e.g., training from 

scratch or fine-tuning a pre-existing model), and one of the 

works tried an alternative method to sample the initial dataset, 

and both of these could also be considered components of 

active learning methods. 

 

RQ2: What components of active learning methods lack 

diversity in terms of the approaches? 

 

It can be seen from Table IV that most approaches perform 

query at the image level and adopt an uncertainty based scoring 

function in one form or another to estimate informativeness. 

However, the recent work by [18] put into question the efficacy 

of image level methods. Similarly, [9] challenged the 

underlying assumption with using uncertainty as a metric of 

informativeness as it does not necessarily correlate with 

increase mean average precision, the primary metric of the 

benchmarks. Moreover, very few works were found to have 

attempted different sampling strategies and class-balancing 

techniques, the former mostly being due to the observation that 

in most cases top K sampling is optimal in obtaining the best 

possible dataset. On the other hand, the limited focus on 

dedicated class-balancing may be attributed to the assumption 

that the acquisition function automatically compensates for 

underperforming minority classes. The same also could be said 

about diversity sampling. 

Besides these, most works have not explored alternative 

strategies to randomly sampling the initial set since most 

scoring functions require the presence of a partially trained 

model to work which does not become available until the end 

of the first cycle of training.  Similarly, it can also be seen that 

most works discard the previously trained model and train a 

new model from scratch in the subsequent cycles, particularly 

due to the warm-starting problem highlighted in [26]. 

 

VIII. CONCLUSIONS 

 

Although various active learning methods have been 

proposed for object detection, certain components have seen 

less diverse efforts in terms of introducing novelty. Future 

work in this area could focus on proposing better methods and 
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strategies for these components. Particularly, more work is 

required to combat the false negative problem found in region 

and instance query based methods that reduce the appeal of 

such approaches despite their promising results in benchmarks. 

Likewise, methods that can leverage the trained model from 

the previous cycle rather than discarding it entirely could 

potentially enhance efficiency, especially if they can address 

the challenges associated with warm start-ups. Not to mention 

the significant reduction in training time and cost that could be 

yielded by such methods. Likewise, and perhaps the most 

challenging among them all, developing a strategy to assess the 

informativeness of samples without relying on a trained model 

from the initial cycle could mitigate issues stemming from 

random initial sets. 
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