
International Journal of Innovative Computing 14(2) 33-40

33

Performance Comparative Study on Zero Day

Malware Detection Using XGBoost and Random

Forest Classifiers

Ahmad Faris Aiman Arizal1, Marina Md-Arshad2, Adlina Abdul-Samad3*, Maheyzah Md Sirat4, Siti Hajar Othman5

Faculty of Computing,

Universiti Teknologi Malaysia,

 81310 UTM Johor Bahru, Johor, Malaysia

Email: af.aiman@graduate.utm.my1, marina@utm.my2, adlina6@graduate.utm.my3, maheyzah@utm.my4 hajar@utm.my5

Submitted: 21/4/2024. Revised edition: 12/8/2024. Accepted: 19/8/2024. Published online: 25/11/2024

DOI: https://doi.org/10.11113/ijic.v14n2.449

Abstract—Zero-day malware is a significant threat to

cybersecurity as it is unknown to antivirus systems and can cause

significant damage before being detected. Traditional malware

detection methods rely on signatures and patterns specific to

known malware, but these methods are ineffective against zero-

day malware that has not been previously encountered. Machine

learning has shown promise in detecting and classifying unknown

threats, including zero-day malware. In this research, we propose

using machine learning classifiers to detect and classify zero-day

malware. The selected classifiers are Random Forest and

XGBoost, well-known and widely used in machine learning. To

evaluate the effectiveness of our approach, we first collect and pre-

process a dataset of known malware. The dataset, Meraz'18, is

used to train and test the selected classifiers. This dataset contains

PEHeaders with static analysis performed with each section

calculated on its entropy. The dataset contains a representation of

benign and malicious files that has been use in previous studies for

zero-day malware detection, namely during the payload injection

phase. To prevent overfitting, 10-fold-cross-validation is utilized.

The performance metrics of these classifiers such as F1-score,

accuracy, Cohen’s kappa, precision and recall analyzed on the

known malware dataset and evaluate their ability to detect and

classify zero-day malware. Hyperparameter tuning is used to tune

each model to give the best performance of each model. The results

show that the proposed classifiers perform extremely well, both

achieving up to almost 98% accuracy. Using machine learning

classifiers for zero-day malware detection and classification can

significantly improve cybersecurity by providing a way to detect

and protect against unknown threats. This work is an essential

step towards the development of more robust cybersecurity

systems that can effectively protect against unknown threats.

Keywords—Machine learning, zero-day malware, hyperparameter

optimisation, ensemble machin learning algorithms

I. INTRODUCTION

Computers are becoming more accessible to the general

populace as computers become cheaper to manufacture, thanks

to advances in semiconductor manufacturing. In recent years,

more individuals and families of all wage categories now own at

least one computer. Computers simplify human lives by

automating complex processes. For example, accounting,

project management, Customer Relationship Management, and

payment transaction can be automated using a computer with

specialized software. As computers see widespread adoption, so

does the development of malware. Malware is software designed

to either damage, disrupt, or allow an adversary to gain access

to an individual or organization’s computer [1]. Since the early

days of computing, malware has always presented a concern to

individuals or organizations for data security and integrity as

they usually render the affected computer unusable. To protect

against this ordeal, anti-viruses are developed to counter

malware.

Despite the development of anti-viruses, the development of

malware is still increasing linearly, from 2005 to 2015 from 1

million to 400 million total malware [2]. However, malware

nowadays employs zero-day vulnerabilities. Zero-day

vulnerabilities refer to a vulnerability unbeknownst to

programmers, system administrators and security analysts. It is

often seen as a bug in a program's code. Once a malware

developer finds a bug in the program's code, they will develop

an application or script that will utilize this exploit to its fullest

and start to deliver payloads that can cause damage to the

computer. Recent examples of this are WannaCry and Petya;

both of these malwares used an exploit in Microsoft's Server

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

34

Message Block Protocol, which was only discovered after

WannaCry and Petya were deployed to the masses. As malware

nowadays more frequently using zero days vulnerabilities to

infect computers rather than social engineering, it has become a

concern for security analysts and anti-virus companies.

To safeguard organization and individual data, a new type of

malware detection needs to be developed. In recent years, many

scholars have proposed using Machine Learning to detect

malware. In the field of malware detection, machine learning

algorithms have shown promising results, especially in

combating zero-day malware threats. Two notable classifiers

that have proven effective in this area are Random Forest and

XGBoost. Research by [3] demonstrates that ensemble methods,

specifically Random Forest and XGBoost, exhibit superior

accuracy, precision, and recall in malware detection compared

to other methods. Similarly, [4] found that Random Forest

displayed the best accuracy rates with zero false positives and

false negatives in detecting zero-day malware. To evaluate a

machine learning model, several metrics are set. These metrics

are used in the evaluation methodologies of machine learning,

such as confusion metrics, accuracy, precision, recall, and F1-

Score. Machine learning is an excellent foundation as malware

response requires rapid response, especially for zero days, as it

is hard to detect malware employing zero days.

Therefore, this research aims to identify and extract relevant

features from Microsoft Windows PE Header files for zero-day

malware detection and classification. Subsequently, the study

will train and compare the performance of Random Forest and

XGBoost algorithms in detecting zero-day malware, evaluating

their effectiveness using precision, accuracy, recall, and F1-

score metrics.

II. PROBLEM BACKGROUND

The severity of a malware attack could no longer be

compared to the early 80s and 90s as there is now more emphasis

on extortion. The main objective of these computer viruses at the

time was to mess with the end user's computer, and at best, they

must send their computer to a computer repair shop. For

example, a zero-day malware developed in the late 90s dubbed

Chernobyl or Spacefiller renders the target computer useless as

the BIOS (Basic Input Output System) is overwritten with zeros

or junk. Additionally, to prevent any data recovery efforts, the

first megabyte or boot sector in a storage medium is overwritten

with zeros, preventing Windows 9x class systems from booting

up at the time. Compared to current zero-day malware such as

WannaCry in 2018, the malware will render the computer

useless as all documents with a selected extension name will be

encrypted using a proprietary cryptography algorithm written by

the malware developers. Then, a countdown timer will be

displayed to the end user regarding how the keys there will be

destroyed, and a price will be set by the malware developers

detailing how to pay the ransom. Not only will the computer be

rendered useless, but documents are far more valuable than a

computer in specific use case scenarios.

Organisations data is a precious asset to malware developers

as they can hold the data ransom in exchange for monetary

value. The development of such ransomware as WannaCry has

been estimated to cause damages to corporations at around $4

Billion [5] Not only has it crippled corporations but also public

services, such as the NHS UK. NHS UK had to pay [6] to free

their data from ransom. An investigation was launched by the

National Audit Office of the UK; an estimated 19,000

appointments were cancelled in total due to the severity of

WannaCry. Since the WannaCry ransomware types of malicious

software emerged, more types of similar malicious software

have emerged. One such example is aptly named the

Rensenware joke virus, where victims must play a bullet hell the

game and reach a specific score to recover their data. The

evermore-encompassing world now requires cybersecurity as

cyber-attacks are becoming a cause for concern, as it spares no

mercy for those involved.

In essence, it is essential to conduct this research to

safeguard organisational and individual data. By detecting and

classifying malware using machine learning algorithms, a

computer can evaluate the malware for itself rather than wait for

virus definition updates from an anti-virus company.

Additionally, for countries with slow internet bandwidth, a

machine learning-based detection and classification method can

prove helpful as virus definition updates are downloaded very

slowly, thanks to the bandwidth.

III. LITERATURE REVIEW

A literature review is conducted in order to understand the

current trends in zero-day malware detection, famous zero-day

malware and assessing the use of current algorithms in machine

learning used to classify.

A. Review on Zero Day Malware, Malware Analysis and

Detection Techniques

This section discusses the current malware detection

techniques employed by anti-viruses of the current decade. It is

essential to understand these techniques as analysis is a step

towards detection and justification of using machine learning

algorithms over these methods.

1) Static Analysis

Static analysis is method where an executable is examined

for any sign of malicious intent. The examination process is

done by reverse engineering the code of the executable to

determine if the executable has malicious code or not. For

Windows based computers, we can examine the opcode, pe-

header, string and API calls for any malicious code. This is done

by using tools that break down or test an executable. For

instance, tools that commonly used are for malware analysis are

debugger, disassembler, decompiler and source code analysers.

2) Dynamic Analysis

Dynamic analysis on the other hand, is a method where a

behaviour of an executable is examined. These executables are

run in controlled environments, usually in virtual machines

(VM) to evaluate the behaviour of the executable. Data then is

collected from the executables such as invoked system API calls,

Network, Registry, File data are collected for evaluation. Tools

that are commonly used for dynamic analysis are usually process

hacker, wireshark and cuckoo sandbox.

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

35

3) Hybrid Analysis

Hybrid analysis combines Static and Dynamic approaches

receive the benefits of both approaches. To illustrate an

example, different tools are used to collect static and dynamic

features to create hybrid feature sets based on several types of

data like string, opcode and API calls [7].

4) Signature-based detection

In an executable, there are sequences of code which we can

classify the malware which we call a signature. Each malware is

unique, however there are patterns that we can detect in order to

classify it as a malware [8] This methodology is used by many

anti-virus developers to detect malware that has been discovered

previously.

5) Behavioral-based detection

A behavioral-based detection classifies a behavior of an

executable if its part of a malware family. It is a set of rules

defined by an anti-virus developer to determine its

maliciousness. Usually, this method uses a sandbox to evaluate

the behaviour of the suspected malicious code. Certain examples

where a behavior is flagged as suspicious or malicious are:

disabling anti-virus or security controls, registering for autostart,

shutting down or installing new system services, altering or

deleting system files and in generally performing any action that

may seem highly abnormal [9].

6) Heuristic-based detection

Hybrid analysis combines Static and Dynamic approaches

receive the benefits of both approaches. To illustrate an

example, different tools are used to collect static and dynamic

features to create hybrid feature sets based on several types of

data like string, opcode, and API calls.

B. Zero Day Malware Background

Zero Day Malware is malicious software using zero-day

exploits found in software or hardware to in order to execute a

payload in a victims computer. Generally, black-hat or grey-hat

hackers take advantage of this zero-day vulnerability as they

allow them to again access to a computer easier when compared

to a malware where it relies on social engineering, giving the

user full administrative rights when running the malicious

executable. These zero-day vulnerabilities are a cause for

concern as they are very unpredictable and hard to detect. Since

zero-day vulnerabilities are present in all software, it is hard to

patch it by the end-user unless an update is issued by the

developer. Usually, these executables are found in Microsoft

Products, namely the Microsoft Office Suite and Adobe

software as they are the most used applications in the whole

world.

1) Stuxnet

Stuxnet is a malware that is speculated to be developed by

the United States and Israeli intelligence agencies respectively

[8] with the purpose to delay the Iranian Nuclear Weapons

programme. It is classified as a zero day namely because it uses

stolen digital certificates made by Siemens, which control the

Supervisory Control and Data Acquistion or (SCADA) to gather

data. In this case, it was to control and collect data from the

nuclear reactor for Iran.

2) Hafnium

Hafnium is another example of zero day malware. It uses a

zero day exploit on Microsoft Exchange Servers where the web

shell of the malicious script is used by an attacker to maintain

persistent access to an online application that has already been

compromised. [11]. Using the ProxyLogon vulnerability (CVE-

2021-26855), Hafnium web shells were deployed as part of an

APT assault to learn more about the companies managing the

impacted systems.

C. Review on Machine Learning Algorithm in Malware

Detection

For unsupervised learning, it is a type of machine learning in

which an algorithm is trained on an unlabeled dataset, where the

correct output is not provided. The goal of unsupervised learning

is to discover patterns and relationships in the data just like in

Fig. 1. Unlike supervised learning, where the algorithm is

provided with labeled training examples and learns to make

predictions based on that data, unsupervised learning algorithms

must discover patterns and relationships in the data on their own.

However, in this research, we had applied the supervised

learning algorithm such as random forest and XGBoost in

malware detection.

Fig. 1. Unsupervised Machine Learning Model

1) Random Forest

Random Forest is a popular machine learning algorithm used

for classification and regression tasks based on Fig. 2. It is an

ensemble method that combines multiple decision trees to make

a final prediction. Random Forest is known for its robustness,

accuracy, and ability to handle large datasets with a high number

of features.

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

36

Fig. 2. Random Forest Diagram

The algorithm works by creating multiple decision trees

using a random subset of the features and a random subset of the

training data. The predictions of all the decision trees are then

combined using a voting mechanism to make a final prediction.

In a classification task, the majority vote of the decision trees is

used to determine the class label, and in a regression task, the

average of the predictions is used to determine the final

prediction.

2) XGBoost

XGBoost is a distributed gradient boosting library that has

been developed to be very effective, adaptable, and portable. It

uses the Gradient Boosting framework to implement machine

learning algorithms. A parallel tree boosting method called

XGBoost (also known as GBDT or GBM) is available to address

a variety of data science issues quickly and accurately based on

Fig. 3.

Fig. 3. XGBoost Diagram

The basic idea of gradient boosting is to train weak learners

(simple models) in sequence and aggregate their predictions. At

each iteration, the algorithm looks at the previous predictions

and fits the new model to correct the errors made by the previous

models. In XGBoost, the weak learners are decision trees and

the algorithm uses a more sophisticated technique called

gradient-based one-side sampling to fit the new trees. This helps

to reduce overfitting and improve the accuracy of the final

model.

D. Related Studies

Zero-day malware is a type of malicious software that

exploits unknown vulnerabilities in computer systems. It can be

particularly challenging to detect and classify due to its novel

nature. Machine learning has emerged as a promising approach

for addressing this challenge, and numerous studies have been

published on the use of machine learning for zero-day malware

detection and classification.

Abri et al. investigated the performance of machine learning

algorithms, simple neural networks with single layer/multiple

layers/multiple layers with a large value for epoch. The result is

that all machine learning algorithms except for Gaussian Naïve

Bayes and Quadratic Discriminant Analysis (QDA) performed

exceptionally well, achieving up to 99 percent accuracy.

However, validation is only done using 10-fold cross-validation

only [12]. He et al. proposed a solution by using Hardware-

Supported Malware Detection (HMD) that utilises Hardware

Performance Counters (HPCs). It’s feature selection is based on

Recursive Feature Elimination (RFE) to filter the weakest

feature to train the ML algorithm. Boosted-Random Forest

gained the highest F1-score at 0.92 [13].

In mobile devices such as android, Yuan et. Al. proposed

associating static and dynamic feature analysis to characterise

android malware using deep learning algorithms. At different

ratios (the ratio of benign/malignant), the overall accuracy

increases from 94 percent to 99.54 percent [14]. Nikam et. al.

Extracted static features in the AndroidManfiest.xml and

Classes.dex then preprocessed the static features into the

SciKitLearn library. Then, machine learning algorithms are

trained to analyse static features. XGBoost received the highest

accuracy at 98.72 percent in classifying malware [15].

Gavrilut et. al. used a Perceptron or known as a Single Layer

Neural Network for the detection of malware. To train the

perceptron, three datasets were used. One for training, testing

and a scale-up dataset. The result of this study is that at the scale-

up dataset, the perceptron loses accuracy by quite a margin from

96.16% to 88.52% [1]. Another study Mahajan et. al. proposed

using kNN, Naïve Bayes, Neural Networks, Random Forests,

Decision Trees and SVM for malware classification. The dataset

is self-generated and comprises of 5800 malware samples.

Results are using confusion matrix and cohen’s kappa. Random

Forest achieved the highest accuracy at 94.2 percent and cohen’s

kappa at 93.8 percent. [16]

Singh et al. proposed a system or an application comprised

of three modules, the user interfaces, training module, and

malware test module. The proposed module is used to extract

the data (or static analysis). The dataset used is from Kaggle,

specifically the Microsoft Malware Classification Challenge or

(BIG 2015). The experiment result is that Decision Tree

achieved the highest accuracy at 99.04 percent [17]. In another

study, Gandotra et. al. generated their dataset and extracted

features from the malware. Evaluation is done using the standard

Confusion Matrix and 10-fold cross-validation. All the machine

learning classifiers achieved 99 percent accuracy [18].

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

37

IV. DATASET

The Meraz’18 dataset is selected for this study as it provides

up-to-date samples of malware, with a mixture of zero-day

malware. The Microsoft Malware Classification Challenge

(MMCC) dataset, while used prominently, is no longer up to

date and was last used in 2015. Since then, new malware variants

and techniques have emerged, making the MMCC dataset less

relevant to the current threat landscape. Using up-to-date dataset

such as Meraz’18 can improve the effectiveness of malware

detection.

The lack of a publicly available dataset on zero-day malware

is a challenge in the field of cybersecurity. The main issue for

the scarcity of such a dataset is the fact that most researchers in

this field create their own dataset for their specific studies,

making it difficult to assemble a comprehensive and

standardized dataset for wider use.

The dataset contains Microsoft Portable Executable Headers

with calculated entropy for each section. The Table I below

shows the features present.

TABLE I. Features present in the Meraz'18 dataset [16]

Fields Description

Machine The executable's target computer's CPU

architecture is identified by this number.

SizeOfOptionalHeader The optional header's length

Characteristics a flag that indicates the file's

characteristics, including its

executability, whether it's a system file
rather than a user programme, and a

number of other details.

MajorLinkerVersion The linker's major and minor version
numbers. MinorLinkerVersion

SizeOfCode This column stores the size of the code

(.text) part or, if there are many sections,

the sum of all the code sections.

SizeOfInitializedData This column stores the size of the
initialised data (.data) section or, if there

are many sections, the sum of all

initialised data sections.

SizeOfUninitializedData This variable stores the size of the

uninitialized data (.bss) section or, if there

are many sections, the total size of all
uninitialized data sections.

AddressOfEntryPoint The entry point is given a Relative Virtual

Address (RVA) as soon as the file is
loaded into memory. According to the

documentation, this relative address

relates to the launch method for device
drivers as well as the start address for

programme images. An entry point is not

required for DLLs; instead, the
AddressOfEntryPoint field is used.

BaseOfCode An RVA displaying the start of the code

section is generated when the file is

loaded into memory.

BaseOfData An RVA of the start of the data section

when the file is loaded into memory.

ImageBase This field stores the first byte of the

image's desired address when it is loaded
into memory (the preferred base address)

SectionAlignment The value (in bytes) stored in this field is

used to align memory chunks along
boundaries that are multiples of this

value.

FileAlignment This field stores a value (in bytes) that is

utilised, like SectionAligment does, to

Fields Description

align the raw section data on the disc. The

leftover chunk is padded with more data

if the size of the actual section data is
smaller than the FileAlignment value.

MajorOperatingSystemVersion These parts of the structure specify the

major version number and minor version
number of the needed operating system,

the major version number and minor

version number of the required image, the
main version number and minor version

number of the required subsystem, and so

forth.

MinorOperatingSystemVersion

MajorImageVersion

MinorImageVersion

MajorSubsystemVersion

MinorSubsystemVersion

SizeOfImage The size, in bytes, of the picture file,
including all headers. Since this number

is needed to load the picture into memory,

it is rounded up to a multiple of
SectionAlignment.

SizeOfHeaders The image file's overall size in bytes,

including all headers. This amount is
rounded up to a multiple of

SectionAlignment because it is necessary

to load the image into memory.

CheckSum At the moment the image is loaded, it is

utilised to verify the picture and acts as a

checksum for the image file.

Subsystem This parameter defines, among other
things, whether the executable image file

is NX-compatible and if it can be

relocated while in use.

DllCharacteristics This parameter specifies several

properties of the executable image file,

such as whether it is NX compatible and
if it may be moved while in use.

SizeOfStackReserve The size of the stack to commit, the size

of the stack to reserve, and the amount of

local heap space are all specified by these

parameters.

SizeOfStackCommit

SizeOfHeapReserve

SizeOfHeapCommit

LoaderFlags A reserved field

NumberOfRvaAndSizes Size of the DataDirectory array.

V. FRAMEWORK FOR ZERO-DAY MALWARE DETECTION

This study is structured into three distinct phases depicted in

Fig. 4. In the initial phase, a comprehensive review and analysis

of the procedures and qualities are conducted, alongside the

implementation of data pre-processing techniques and feature

engineering techniques. The second phase focuses on the

practical application of selected machine learning algorithms

through training with hyperparameter optimisation techniques

that are selected. Lastly, the final phase involves a detailed

examination and discussion of the research findings.

Fig. 4. Framework for Zero-Day Malware Detection

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

38

A. Phase 1: Identification of Dataset, Feature Engineering

to Train selected Machine Learning Algorithms

In the starting phase of this project, a literature review is

conducted on zero-day malware. Existing research namely

focuses on regular malware and not zero-day malware. The

dataset from Meraz’18 obtained from Kaggle, is chosen and will

be used in this experiment. Statistical analysis was done on these

files which mainly constituted the extraction of PE information

and calculation of entropy of different sections of these files.

Python and Scikit-learn has been selected as they are widely

used among researchers. Feature extraction and selection is

performed in this phase using the ExtraTreesClassifier. These

features are then used in Phase 2 for training.

The dataset will be loaded using the Pandas library, and then

preprocessed using the scikit-learn library using the

SimpleImputer function for missing values. Feature engineering

will be performed by using the ExtraTreesClassifier to identify

the most prominent features.

1) Data Pre-procesing

The dataset is loaded using the pandas library, the variable

data is holding the dataset. We drop non numerical values in the

dataset, such as ID, MD5 and legitimate as they are not relevant

for feature engineering. Then, by using the imputer library,

missing values are filled using the strategy=’mean’ in the empty

values each column. The .csv file contains a lot of rows, hence

using the imputer library is useful as it produces meaningful

results compared to a set value by the user.

2) Feature Selection using ExtraTreesClassifier

To perform the feature selection, an extra trees classifier is

selected. The Extra Trees classifier is a useful method for feature

selection as it allows for the identification of the most important

features in a dataset for a given classification task. The process

involves training the classifier on the dataset, and then using the

feature importance attribute to determine the importance of each

feature. The feature importance’s are computed as the average

decrease in impurity from splitting the data on that feature. The

top k features with the highest importance score can then be

selected and used to train the classifier. This method can be

implemented using the scikit-learn library in Python by

importing the ExtraTreesClassifier, fitting it to the training data,

and accessing the feature_importances attribute. This method

can be useful in high dimensional datasets where there are many

features, and the goal is to reduce the dimensionality while

keeping the most informative features. Figure 5 shows feature

heatmap in Meraz'18 dataset.

Fig. 5. Feature Heatmap in Meraz'18 dataset

B. Phase 2: Development of Malware Detection and

Classification Model.

In this second phase of the research, which utilizes machine

learning techniques, a series of crucial steps are undertaken,

encompassing comprehensive training of the model and

meticulous hyperparameter tuning using Bayesian

Optimisation to optimise its performance and enhance its

efficacy in identifying and classifying zero-day malware. Table

II shows the hyperparameters selected for tuning Random

Forest.

TABLE II. Hyperparameters selected for tuning Random Forest

Hyperparameter Description

n-estimators Numbers of tree in ensemble

max-depth Maximum level of trees

min-samples-split
Minimum samples required to be split (in a

internal node)

min-samples-leaf Minimum number of samples in a leaf node

max_samples Max samples to use for each tree in the

ensemble.

max_features This determines the max number of features to

consider when looking for the best split.

class_weight Handles class imbalance. When set to

balanced, the algorithm adjusts the class

weights inversely proportional to class
frequencies.

The n_estimators, max_depth, min_samples_split and

min_samples_leaf are selected based on Table III. These are the

common values selected when tuning a random forest

classification task. [20]. Then, an instance of

BayesianOptimisation is created with parameters from

param_bounds_rf and as well as the objective function, is

called. Maximise is called in order to start the optimisation

process and then the best parameters are selected and printed.

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

39

TABLE III. Hyperparameter selected for tuning XGBoost

Hyperparameter Description

n-estimators Numbers of tree in ensemble

max-depth Maximum level of trees

min-samples-split
Minimum samples required to be split (in a

internal node)

min-samples-leaf Minimum number of samples in a leaf node

Similar to Random Forest, the methods are the same, with a

few differences in hyperparameters, as XGBoost is a Boosting

ensemble learning methods. Learning_rate, max_depth,

subsample, colsample_bytree, gamma, scale_pos_weight are

selected to be optimised based on the XGBoost. These

XGBoost parameters are the most common to be optimised

[19]. Then, an instance of BayesianOptimisation is created with

parameters from param_bounds_xgb and as well as the

objective function, is called. Maximise is called in order to start

the optimisation process and then the best parameters are

selected and printed.

C. Phase 3: Performance Comparison of trained machine

learning models.

After training the selected machine learning algorithms, the

performance of each machine learning model is evaluated. This

evaluation aims to assess the trained machine learning models

generalize to unseen data and to compare algorithms in terms of

various selected performance metrics.

VI. RESULTS

From the results in Table IV, it is found that Random Forest

is the best performing model, having high accuracy, precision,

recall, f1-score and Cohen’s kappa. shows the comparison of

XGBoost and Random Forest with hyperparameter tuning and

without hyperparameter tuning.

Table IV: Algorithm comparison with defined performance metrics.

Metrics Algorithms

Random

Forest

(%)

XGBoost

(%)

Random

Forest

(%) w/o
HP

XGBoost

(%)

w/o HP

Accuracy 98.6 98.50 98.1 98.48

Precision 98.41 99.1 98.45 98.8

Recall 98.2 98.59 98.62 98.84

F1-score 98.50 98.84 98.53 98.82

Cohen’s

Kappa score

96.75 96.72 96.0 96.0

The results in Table IV show that hyperparameter

adjustment significantly affects how well machine learning

algorithms perform. The results show that hyperparameter

adjustment significantly affects how well machine learning

algorithms perform. When comparing the tuned models,

Random Forest outperforms XGBoost in all metrics. However,

it is important to note that the differences are very minimal. With

hyperparameter tuning, XGBoost achieves an Accuracy of

98.50%, Precision of 99.1%, Recall of 98.59%, F1-score of

98.84%, and Cohen's Kappa score of 96.72%. On the other hand,

Random Forest with tuning achieves an Accuracy of 98.6%,

Precision of 98.41%, Recall of 98.2%, F1-score of 98.84%, and

Cohen's Kappa score of 96.75%.

Comparing the untuned models, XGBoost still performs

better, with an Accuracy of 98.48%, Precision of 98.8%, Recall

of 98.84%, F1-score of 98.82%, and Cohen's Kappa score of

96.0%. For Random Forest without hyperparameter tuning, the

Accuracy is 98.1%, Precision is 98.45%, Recall is 98.62%, F1-

score is 98.53%, and Cohen's Kappa score is 96.0%.

Hyperparameter adjustment improves model performance,

however most metrics are similar between the two techniques.

Hyperparameter tweaking affects datasets and hyperparameters

differently. In certain circumstances, hyperparameter

adjustment improves performance significantly, while in others

it improves performance somewhat.

A. Performance Comparison scenario using Chrome

Extension

A sample dataset of 15 samples was used in the performance

comparison scenario utilizing the Chrome Extension. Ten of

these samples were determined to be zero-day malware, and five

to be benign. The effectiveness of the machine learning models

in correctly identifying the samples was evaluated using the

confusion matrix. Analysis of the confusion matrix's results

reveals important information about the models' capacity to

distinguish between malicious and benign samples in the real-

world application of the Chrome Extension. Table V shows the

comparison of XGBoost and Random Forest using the chrome

extension, with models that utilised hyperparameter tuning and

without hyperparameter tuning.

TABLE V. Comparison of selected algorithms with defined performance

metrics used in the chrome extension context

Metrics Algorithms

Random

Forest

(%)

XGBoost

(%)

Random

Forest

(%) w/o
HP

XGBoost

(%)

w/o HP

Accuracy 73.33 73.33 60.00 66.67

Precision 70.00 60.00 50.00 66.67

Recall 87.5 100.00 83.33 88.89

F1-score 77.78 75.00 60.25 76.19

VII. CONCLUSION

This research has demonstrated the feasibility of utilizing

machine learning techniques, specifically Random Forest and

XGBoost, for the detection of zero-day malware. By focusing

on the extraction of critical features from PE header files, we

have established a foundation for effective malware

classification. The successful implementation of feature

selection methods has underscored the importance of carefully

selecting informative attributes for enhancing model

performance.

Ahmad Faris Aiman Arizal et al. / IJIC Vol. 14 No. 2 (2024) 33-40

40

Both Random Forest and XGBoost have exhibited

promising results in detecting zero-day malware, as evidenced

by the high accuracy, precision, recall, and F1-score achieved.

While the performance of these ensemble methods was

comparable in this study, further investigations into their

strengths and weaknesses under different dataset distributions

and malware types would be beneficial. This accomplishment

illustrates the successful training and improvement of machine

learning classifiers for precise zero-day malware identification

and classification.

To summarise, machine learning is a good contender and

both ensemble methods are somewhat close in terms of

performance in classification. Cybersecurity personell can

leverage machine learning algorithms in detecting zero-day

malware in where rapid response is required.

VIII. SUGGESTION FOR IMPROVEMENT AND FUTURE WORKS

Bayesian optimization was used in this study as a method for

hyperparameter tweaking, which was successful in enhancing

the functionality of the machine learning classifiers. However, it

might be advantageous to investigate alternate optimization

methods, like Particle Swarm Optimization (PSO), for future

work. PSO has showed promise in terms of hyperparameter

optimization, and it could provide new information and possibly

boost classifier performance. The robustness and

generalizability of researchers' models can be further improved

by taking into account various optimization strategies.

ACKNOWLEDGMENT

We would like to express our heartfelt appreciation to Miss

Marina Md Arshad, for her guidance and support throughout

the research process. We are truly grateful for her mentorship

and for the inspiration she provided during every stage of this

research.

CONFLICTS OF INTEREST

The author(s) declare(s) that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] Gavrilut, D., Cimpoesu, M., Anton, D., & Ciortuz, L. (2009).

Malware detection using machine learning. 2009 International

Multiconference on Computer Science and Information Technology.

Doi:10.1109/imcsit.2009.5352759.
[2] Alenezi, M. N., Alabdulrazzaq, H. K., Alshaher, A. A., Alkharang, M.

M. (2022). Evolution of malware threats and techniques: A Review.

International Journal of Communication Networks and Information
Security (IJCNIS), 12(3). Doi:10.17762/ijcnis.v12i3.4723 .

[3] Li, Z. (2024). Comprehensive evaluation of mal-api-2019 dataset by

machine learning in malware detection. IJCSIT, 2(1), 1-9.

https://doi.org/10.62051/ijcsit.v2n1.01.
[4] Ekong, A. (2023). Securing against zero-day attacks: a machine learning

approach for classification and organizations’ perception of its impact.

Journal of Information Systems and Informatics, 5(3), 1123-1140.
https://doi.org/10.51519/journalisi.v5i3.546.

[5] Cybertalk. (2022). 5 years after the first WannaCry attack. Retrieved

from https://www.cybertalk.org/5-years-after-the-first-wannacry-
attack/#:~:text=WannaCry’s%20impact,roughly%20%244%20billion%

20in%20damages.

[6] Alford, J. (2019). NHS cyber-attacks could delay life-saving care and
cost Millions: Imperial News: Imperial College London. Retrieved

January 15, 2023, from https://www.imperial.ac.uk/news/193151/nhs-

cyber-attacks-could-delay-life-saving-care/.
[7] Mira, F. (2021). A systematic literature review on malware analysis.

2021 IEEE International IOT, Electronics and Mechatronics Conference

(IEMTRONICS). Doi:10.1109/iemtronics52119.2021.9422537
[8] Inayat, U., Zia, M. F., Ali, F., Ali, S. M., Khan, H. M., & Noor, W.

(2021). Comprehensive Review of Malware Detection Techniques. 2021

International Conference on Innovative Computing (ICIC).
Doi:10.1109/icic53490.2021.9693072

[9] Aboaoja, F. A., Zainal, A., Ghaleb, F. A., Al-rimy, B. A., Eisa, T. A.,
& Elnour, A. A. (2022). Malware detection issues, challenges, and

future directions: A survey. Applied Sciences. 12(17), 8482.

Doi:10.3390/app12178482
[10] Baezner, M., & Robin, P. (2018.). Stuxnet. Retrieved January 15, 2023,

from https://www.researchgate.net/publication/323199431_Stuxnet.

[11] Gatlan, S. (2022). Microsoft: New malware uses windows bug to hide
scheduled tasks. Retrieved January 15, 2023, from

https://www.bleepingcomputer.com/news/security/microsoft-new-

malware-uses-windows-bug-to-hide-scheduled-tasks/.
[12] Abri, F., Siami-Namini, S., Khanghah, M. A., Soltani, F. M., Namin, A.

S. (2019). Can machine/deep learning classifiers detect zero-day

malware with high accuracy? 2019 IEEE International Conference on
Big Data (Big Data). Doi:10.1109/bigdata47090.2019.9006514.

[13] He, Z., Miari, T., Makrani, H. M., Aliasgari, M., Homayoun, H., Sayadi,

H. (2021). When machine learning meets hardware cybersecurity:
Delving into accurate zero-day malware detection. 2021 22nd

International Symposium on Quality Electronic Design (ISQED).

Doi:10.1109/isqed51717.2021.9424330.
[14] Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: Android

malware characterization and detection using deep learning. Tsinghua

Science and Technology, 21(1), 114-123. Doi:10.1109/tst.2016.7399288
[15] Nikam, U. V., & Deshmuh, V. M. (2022). Performance evaluation

of machine learning classifiers in malware detection. 2022 IEEE

International Conference on Distributed Computing and Electrical
Circuits and Electronics (ICDCECE).

Doi:10.1109/icdcece53908.2022.9793102.

[16] Mahajan, G., Saini, B., Anand, S. (2019). Malware classification using
machine learning algorithms and Tools. 2019 Second International

Conference on Advanced Computational and Communication

Paradigms (ICACCP). Doi:10.1109/icaccp.2019.8882965.
[17] Singh, P., Kaur, S., Sharma, S., Sharma, G., Vashisht, S., & Kumar,

V. (2021). Malware detection using machine learning. 2021

International Conference on Technological Advancements and
Innovations (ICTAI). Doi:10.1109/ictai53825.2021.9673465.

[18] Hesham, A. (2021). A dive into the PE file format - introduction.

Retrieved January 17, 2023. https://0xrick.github.io/win-internals/pe1/.
[19] Hosseini, S. (2023). A practical guide to hyperparameter tuning of

XGBoost models using Bayesian optimization and grid.

https://medium.datadriveninvestor.com/introduction-31c985114aa1.
[20] Wicaksana, P. Y. (2022).

https://medium.com/@prabowoyogawicaksana/hyperparameter-

optimization-random-forest-classifier-550fd5ed8e14.

