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Abstract—Zero-day malware is a significant threat to 

cybersecurity as it is unknown to antivirus systems and can cause 

significant damage before being detected. Traditional malware 

detection methods rely on signatures and patterns specific to 

known malware, but these methods are ineffective against zero-

day malware that has not been previously encountered. Machine 

learning has shown promise in detecting and classifying unknown 

threats, including zero-day malware. In this research, we propose 

using machine learning classifiers to detect and classify zero-day 

malware. The selected classifiers are Random Forest and 

XGBoost, well-known and widely used in machine learning. To 

evaluate the effectiveness of our approach, we first collect and pre-

process a dataset of known malware. The dataset, Meraz'18, is 

used to train and test the selected classifiers. This dataset contains 

PEHeaders with static analysis performed with each section 

calculated on its entropy. The dataset contains a representation of 

benign and malicious files that has been use in previous studies for 

zero-day malware detection, namely during the payload injection 

phase. To prevent overfitting, 10-fold-cross-validation is utilized. 

The performance metrics of these classifiers such as F1-score, 

accuracy, Cohen’s kappa, precision and recall analyzed on the 

known malware dataset and evaluate their ability to detect and 

classify zero-day malware. Hyperparameter tuning is used to tune 

each model to give the best performance of each model. The results 

show that the proposed classifiers perform extremely well, both 

achieving up to almost 98% accuracy. Using machine learning 

classifiers for zero-day malware detection and classification can 

significantly improve cybersecurity by providing a way to detect 

and protect against unknown threats. This work is an essential 

step towards the development of more robust cybersecurity 

systems that can effectively protect against unknown threats. 

 

Keywords—Machine learning, zero-day malware, hyperparameter 

optimisation, ensemble machin learning algorithms 

I. INTRODUCTION  

 

Computers are becoming more accessible to the general 

populace as computers become cheaper to manufacture, thanks 

to advances in semiconductor manufacturing. In recent years, 

more individuals and families of all wage categories now own at 

least one computer. Computers simplify human lives by 

automating complex processes. For example, accounting, 

project management, Customer Relationship Management, and 

payment transaction can be automated using a computer with 

specialized software. As computers see widespread adoption, so 

does the development of malware. Malware is software designed 

to either damage, disrupt, or allow an adversary to gain access 

to an individual or organization’s computer [1]. Since the early 

days of computing, malware has always presented a concern to 

individuals or organizations for data security and integrity as 

they usually render the affected computer unusable. To protect 

against this ordeal, anti-viruses are developed to counter 

malware. 

Despite the development of anti-viruses, the development of 

malware is still increasing linearly, from 2005 to 2015 from 1 

million to 400 million total malware [2]. However, malware 

nowadays employs zero-day vulnerabilities. Zero-day 

vulnerabilities refer to a vulnerability unbeknownst to 

programmers, system administrators and security analysts. It is 

often seen as a bug in a program's code. Once a malware 

developer finds a bug in the program's code, they will develop 

an application or script that will utilize this exploit to its fullest 

and start to deliver payloads that can cause damage to the 

computer. Recent examples of this are WannaCry and Petya; 

both of these malwares used an exploit in Microsoft's Server 
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Message Block Protocol, which was only discovered after 

WannaCry and Petya were deployed to the masses. As malware 

nowadays more frequently using zero days vulnerabilities to 

infect computers rather than social engineering, it has become a 

concern for security analysts and anti-virus companies. 

To safeguard organization and individual data, a new type of 

malware detection needs to be developed. In recent years, many 

scholars have proposed using Machine Learning to detect 

malware. In the field of malware detection, machine learning 

algorithms have shown promising results, especially in 

combating zero-day malware threats. Two notable classifiers 

that have proven effective in this area are Random Forest and 

XGBoost. Research by [3] demonstrates that ensemble methods, 

specifically Random Forest and XGBoost, exhibit superior 

accuracy, precision, and recall in malware detection compared 

to other methods. Similarly, [4] found that Random Forest 

displayed the best accuracy rates with zero false positives and 

false negatives in detecting zero-day malware. To evaluate a 

machine learning model, several metrics are set. These metrics 

are used in the evaluation methodologies of machine learning, 

such as confusion metrics, accuracy, precision, recall, and F1-

Score. Machine learning is an excellent foundation as malware 

response requires rapid response, especially for zero days, as it 

is hard to detect malware employing zero days. 

Therefore, this research aims to identify and extract relevant 

features from Microsoft Windows PE Header files for zero-day 

malware detection and classification. Subsequently, the study 

will train and compare the performance of Random Forest and 

XGBoost algorithms in detecting zero-day malware, evaluating 

their effectiveness using precision, accuracy, recall, and F1-

score metrics. 

 

II. PROBLEM BACKGROUND 

 

The severity of a malware attack could no longer be 

compared to the early 80s and 90s as there is now more emphasis 

on extortion. The main objective of these computer viruses at the 

time was to mess with the end user's computer, and at best, they 

must send their computer to a computer repair shop. For 

example, a zero-day malware developed in the late 90s dubbed 

Chernobyl or Spacefiller renders the target computer useless as 

the BIOS (Basic Input Output System) is overwritten with zeros 

or junk. Additionally, to prevent any data recovery efforts, the 

first megabyte or boot sector in a storage medium is overwritten 

with zeros, preventing Windows 9x class systems from booting 

up at the time. Compared to current zero-day malware such as 

WannaCry in 2018, the malware will render the computer 

useless as all documents with a selected extension name will be 

encrypted using a proprietary cryptography algorithm written by 

the malware developers. Then, a countdown timer will be 

displayed to the end user regarding how the keys there will be 

destroyed, and a price will be set by the malware developers 

detailing how to pay the ransom. Not only will the computer be 

rendered useless, but documents are far more valuable than a 

computer in specific use case scenarios.  

Organisations data is a precious asset to malware developers 

as they can hold the data ransom in exchange for monetary 

value. The development of such ransomware as WannaCry has 

been estimated to cause damages to corporations at around $4 

Billion [5] Not only has it crippled corporations but also public 

services, such as the NHS UK. NHS UK had to pay [6] to free 

their data from ransom. An investigation was launched by the 

National Audit Office of the UK; an estimated 19,000 

appointments were cancelled in total due to the severity of 

WannaCry. Since the WannaCry ransomware types of malicious 

software emerged, more types of similar malicious software 

have emerged. One such example is aptly named the 

Rensenware joke virus, where victims must play a bullet hell the 

game and reach a specific score to recover their data. The 

evermore-encompassing world now requires cybersecurity as 

cyber-attacks are becoming a cause for concern, as it spares no 

mercy for those involved. 

In essence, it is essential to conduct this research to 

safeguard organisational and individual data. By detecting and 

classifying malware using machine learning algorithms, a 

computer can evaluate the malware for itself rather than wait for 

virus definition updates from an anti-virus company. 

Additionally, for countries with slow internet bandwidth, a 

machine learning-based detection and classification method can 

prove helpful as virus definition updates are downloaded very 

slowly, thanks to the bandwidth. 

 

III. LITERATURE REVIEW 

 

A literature review is conducted in order to understand the 

current trends in zero-day malware detection, famous zero-day 

malware and assessing the use of current algorithms in machine 

learning used to classify. 

 

A. Review on Zero Day Malware, Malware Analysis and 

Detection Techniques 

 

This section discusses the current malware detection 

techniques employed by anti-viruses of the current decade. It is 

essential to understand these techniques as analysis is a step 

towards detection and justification of using machine learning 

algorithms over these methods. 

 

1) Static Analysis 

Static analysis is method where an executable is examined 

for any sign of malicious intent. The examination process is 

done by reverse engineering the code of the executable to 

determine if the executable has malicious code or not. For 

Windows based computers, we can examine the opcode, pe-

header, string and API calls for any malicious code. This is done 

by using tools that break down or test an executable. For 

instance, tools that commonly used are for malware analysis are 

debugger, disassembler, decompiler and source code analysers.  

 

2) Dynamic Analysis 

Dynamic analysis on the other hand, is a method where a 

behaviour of an executable is examined. These executables are 

run in controlled environments, usually in virtual machines 

(VM) to evaluate the behaviour of the executable. Data then is 

collected from the executables such as invoked system API calls, 

Network, Registry, File data are collected for evaluation. Tools 

that are commonly used for dynamic analysis are usually process 

hacker, wireshark and cuckoo sandbox.  
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3) Hybrid Analysis 

Hybrid analysis combines Static and Dynamic approaches 

receive the benefits of both approaches. To illustrate an 

example, different tools are used to collect static and dynamic 

features to create hybrid feature sets based on several types of 

data like string, opcode and API calls [7]. 

 

4) Signature-based detection 

In an executable, there are sequences of code which we can 

classify the malware which we call a signature. Each malware is 

unique, however there are patterns that we can detect in order to 

classify it as a malware [8] This methodology is used by many 

anti-virus developers to detect malware that has been discovered 

previously. 

 

5) Behavioral-based detection 

A behavioral-based detection classifies a behavior of an 

executable if its part of a malware family. It is a set of rules 

defined by an anti-virus developer to determine its 

maliciousness. Usually, this method uses a sandbox to evaluate 

the behaviour of the suspected malicious code. Certain examples 

where a behavior is flagged as suspicious or malicious are: 

disabling anti-virus or security controls, registering for autostart, 

shutting down or installing new system services, altering or 

deleting system files and in generally performing any action that 

may seem highly abnormal [9]. 

 

6) Heuristic-based detection 

Hybrid analysis combines Static and Dynamic approaches 

receive the benefits of both approaches. To illustrate an 

example, different tools are used to collect static and dynamic 

features to create hybrid feature sets based on several types of 

data like string, opcode, and API calls.  

 

B. Zero Day Malware Background 

 

Zero Day Malware is malicious software using zero-day 

exploits found in software or hardware to in order to execute a 

payload in a victims computer. Generally, black-hat or grey-hat 

hackers take advantage of this zero-day vulnerability as they 

allow them to again access to a computer easier when compared 

to a malware where it relies on social engineering, giving the 

user full administrative rights when running the malicious 

executable. These zero-day vulnerabilities are a cause for 

concern as they are very unpredictable and hard to detect. Since 

zero-day vulnerabilities are present in all software, it is hard to 

patch it by the end-user unless an update is issued by the 

developer. Usually, these executables are found in Microsoft 

Products, namely the Microsoft Office Suite and Adobe 

software as they are the most used applications in the whole 

world. 

 

1) Stuxnet 

Stuxnet is a malware that is speculated to be developed by 

the United States and Israeli intelligence agencies respectively 

[8] with the purpose to delay the Iranian Nuclear Weapons 

programme. It is classified as a zero day namely because it uses 

stolen digital certificates made by Siemens, which control the 

Supervisory Control and Data Acquistion or (SCADA) to gather 

data. In this case, it was to control and collect data from the 

nuclear reactor for Iran. 

 

2) Hafnium 

Hafnium is another example of zero day malware. It uses a 

zero day exploit on Microsoft Exchange Servers where the web 

shell of the malicious script is used by an attacker to maintain 

persistent access to an online application that has already been 

compromised. [11]. Using the ProxyLogon vulnerability (CVE-

2021-26855), Hafnium web shells were deployed as part of an 

APT assault to learn more about the companies managing the 

impacted systems. 

 

C. Review on Machine Learning Algorithm in Malware 

Detection 

 

For unsupervised learning, it is a type of machine learning in 

which an algorithm is trained on an unlabeled dataset, where the 

correct output is not provided. The goal of unsupervised learning 

is to discover patterns and relationships in the data just like in 

Fig. 1. Unlike supervised learning, where the algorithm is 

provided with labeled training examples and learns to make 

predictions based on that data, unsupervised learning algorithms 

must discover patterns and relationships in the data on their own. 

However, in this research, we had applied the supervised 

learning algorithm such as random forest and XGBoost in 

malware detection. 

 

 
 

Fig. 1. Unsupervised Machine Learning Model 
 

 

1) Random Forest 

Random Forest is a popular machine learning algorithm used 

for classification and regression tasks based on Fig. 2. It is an 

ensemble method that combines multiple decision trees to make 

a final prediction. Random Forest is known for its robustness, 

accuracy, and ability to handle large datasets with a high number 

of features. 
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Fig. 2. Random Forest Diagram 

 

 

The algorithm works by creating multiple decision trees 

using a random subset of the features and a random subset of the 

training data. The predictions of all the decision trees are then 

combined using a voting mechanism to make a final prediction. 

In a classification task, the majority vote of the decision trees is 

used to determine the class label, and in a regression task, the 

average of the predictions is used to determine the final 

prediction. 

 

2) XGBoost 

XGBoost is a distributed gradient boosting library that has 

been developed to be very effective, adaptable, and portable. It 

uses the Gradient Boosting framework to implement machine 

learning algorithms. A parallel tree boosting method called 

XGBoost (also known as GBDT or GBM) is available to address 

a variety of data science issues quickly and accurately based on 

Fig. 3. 

 

 
 

Fig. 3. XGBoost Diagram 

 

 

The basic idea of gradient boosting is to train weak learners 

(simple models) in sequence and aggregate their predictions. At 

each iteration, the algorithm looks at the previous predictions 

and fits the new model to correct the errors made by the previous 

models. In XGBoost, the weak learners are decision trees and 

the algorithm uses a more sophisticated technique called 

gradient-based one-side sampling to fit the new trees. This helps 

to reduce overfitting and improve the accuracy of the final 

model. 

 

D. Related Studies 

 

Zero-day malware is a type of malicious software that 

exploits unknown vulnerabilities in computer systems. It can be 

particularly challenging to detect and classify due to its novel 

nature. Machine learning has emerged as a promising approach 

for addressing this challenge, and numerous studies have been 

published on the use of machine learning for zero-day malware 

detection and classification. 

Abri et al. investigated the performance of machine learning 

algorithms, simple neural networks with single layer/multiple 

layers/multiple layers with a large value for epoch. The result is 

that all machine learning algorithms except for Gaussian Naïve 

Bayes and Quadratic Discriminant Analysis (QDA) performed 

exceptionally well, achieving up to 99 percent accuracy. 

However, validation is only done using 10-fold cross-validation 

only [12]. He et al. proposed a solution by using Hardware-

Supported Malware Detection (HMD) that utilises Hardware 

Performance Counters (HPCs). It’s feature selection is based on 

Recursive Feature Elimination (RFE) to filter the weakest 

feature to train the ML algorithm. Boosted-Random Forest 

gained the highest F1-score at 0.92 [13]. 

In mobile devices such as android, Yuan et. Al. proposed 

associating static and dynamic feature analysis to characterise 

android malware using deep learning algorithms. At different 

ratios (the ratio of benign/malignant), the overall accuracy 

increases from 94 percent to 99.54 percent [14]. Nikam et. al. 

Extracted static features in the AndroidManfiest.xml and 

Classes.dex then preprocessed the static features into the 

SciKitLearn library. Then, machine learning algorithms are 

trained to analyse static features. XGBoost received the highest 

accuracy at 98.72 percent in classifying malware [15]. 

Gavrilut et. al. used a Perceptron or known as a Single Layer 

Neural Network for the detection of malware. To train the 

perceptron, three datasets were used. One for training, testing 

and a scale-up dataset. The result of this study is that at the scale-

up dataset, the perceptron loses accuracy by quite a margin from 

96.16% to 88.52% [1]. Another study Mahajan et. al. proposed 

using kNN, Naïve Bayes, Neural Networks, Random Forests, 

Decision Trees and SVM for malware classification. The dataset 

is self-generated and comprises of 5800 malware samples. 

Results are using confusion matrix and cohen’s kappa. Random 

Forest achieved the highest accuracy at 94.2 percent and cohen’s 

kappa at 93.8 percent. [16] 

Singh et al. proposed a system or an application comprised 

of three modules, the user interfaces, training module, and 

malware test module. The proposed module is used to extract 

the data (or static analysis). The dataset used is from Kaggle, 

specifically the Microsoft Malware Classification Challenge or 

(BIG 2015). The experiment result is that Decision Tree 

achieved the highest accuracy at 99.04 percent [17]. In another 

study, Gandotra et. al. generated their dataset and extracted 

features from the malware. Evaluation is done using the standard 

Confusion Matrix and 10-fold cross-validation. All the machine 

learning classifiers achieved 99 percent accuracy [18]. 
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IV. DATASET 

 

The Meraz’18 dataset is selected for this study as it provides 

up-to-date samples of malware, with a mixture of zero-day 

malware. The Microsoft Malware Classification Challenge 

(MMCC) dataset, while used prominently, is no longer up to 

date and was last used in 2015. Since then, new malware variants 

and techniques have emerged, making the MMCC dataset less 

relevant to the current threat landscape. Using up-to-date dataset 

such as Meraz’18 can improve the effectiveness of malware 

detection. 

The lack of a publicly available dataset on zero-day malware 

is a challenge in the field of cybersecurity. The main issue for 

the scarcity of such a dataset is the fact that most researchers in 

this field create their own dataset for their specific studies, 

making it difficult to assemble a comprehensive and 

standardized dataset for wider use. 

The dataset contains Microsoft Portable Executable Headers 

with calculated entropy for each section. The Table I below 

shows the features present. 

 
TABLE I. Features present in the Meraz'18 dataset [16] 

 

Fields Description 

Machine The executable's target computer's CPU 

architecture is identified by this number. 

SizeOfOptionalHeader The optional header's length 

Characteristics a flag that indicates the file's 

characteristics, including its 

executability, whether it's a system file 
rather than a user programme, and a 

number of other details. 

MajorLinkerVersion The linker's major and minor version 
numbers. MinorLinkerVersion 

SizeOfCode This column stores the size of the code 

(.text) part or, if there are many sections, 

the sum of all the code sections. 

SizeOfInitializedData This column stores the size of the 
initialised data (.data) section or, if there 

are many sections, the sum of all 

initialised data sections. 

SizeOfUninitializedData This variable stores the size of the 

uninitialized data (.bss) section or, if there 

are many sections, the total size of all 
uninitialized data sections. 

AddressOfEntryPoint The entry point is given a Relative Virtual 

Address (RVA) as soon as the file is 
loaded into memory. According to the 

documentation, this relative address 

relates to the launch method for device 
drivers as well as the start address for 

programme images. An entry point is not 

required for DLLs; instead, the 
AddressOfEntryPoint field is used. 

BaseOfCode An RVA displaying the start of the code 

section is generated when the file is 

loaded into memory. 

BaseOfData An RVA of the start of the data section 

when the file is loaded into memory. 

ImageBase This field stores the first byte of the 

image's desired address when it is loaded 
into memory (the preferred base address) 

SectionAlignment The value (in bytes) stored in this field is 

used to align memory chunks along 
boundaries that are multiples of this 

value. 

FileAlignment This field stores a value (in bytes) that is 

utilised, like SectionAligment does, to 

Fields Description 

align the raw section data on the disc. The 

leftover chunk is padded with more data 

if the size of the actual section data is 
smaller than the FileAlignment value. 

MajorOperatingSystemVersion These parts of the structure specify the 

major version number and minor version 
number of the needed operating system, 

the major version number and minor 

version number of the required image, the 
main version number and minor version 

number of the required subsystem, and so 

forth. 

MinorOperatingSystemVersion 

MajorImageVersion 

MinorImageVersion 

MajorSubsystemVersion 

MinorSubsystemVersion 

SizeOfImage The size, in bytes, of the picture file, 
including all headers. Since this number 

is needed to load the picture into memory, 

it is rounded up to a multiple of 
SectionAlignment. 

SizeOfHeaders The image file's overall size in bytes, 

including all headers. This amount is 
rounded up to a multiple of 

SectionAlignment because it is necessary 

to load the image into memory. 

CheckSum At the moment the image is loaded, it is 

utilised to verify the picture and acts as a 

checksum for the image file. 

Subsystem This parameter defines, among other 
things, whether the executable image file 

is NX-compatible and if it can be 

relocated while in use. 

DllCharacteristics This parameter specifies several 

properties of the executable image file, 

such as whether it is NX compatible and 
if it may be moved while in use. 

SizeOfStackReserve The size of the stack to commit, the size 

of the stack to reserve, and the amount of 

local heap space are all specified by these 

parameters. 

SizeOfStackCommit 

SizeOfHeapReserve 

SizeOfHeapCommit 

LoaderFlags A reserved field 

NumberOfRvaAndSizes Size of the DataDirectory array. 

 

 

V. FRAMEWORK FOR ZERO-DAY MALWARE DETECTION 

 

This study is structured into three distinct phases depicted in 

Fig. 4. In the initial phase, a comprehensive review and analysis 

of the procedures and qualities are conducted, alongside the 

implementation of data pre-processing techniques and feature 

engineering techniques. The second phase focuses on the 

practical application of selected machine learning algorithms 

through training with hyperparameter optimisation techniques 

that are selected. Lastly, the final phase involves a detailed 

examination and discussion of the research findings.  

 

 
 

Fig. 4. Framework for Zero-Day Malware Detection  
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A. Phase 1: Identification of Dataset, Feature Engineering 

to Train selected Machine Learning Algorithms 

 

In the starting phase of this project, a literature review is 

conducted on zero-day malware. Existing research namely 

focuses on regular malware and not zero-day malware. The 

dataset from Meraz’18 obtained from Kaggle, is chosen and will 

be used in this experiment. Statistical analysis was done on these 

files which mainly constituted the extraction of PE information 

and calculation of entropy of different sections of these files. 

Python and Scikit-learn has been selected as they are widely 

used among researchers. Feature extraction and selection is 

performed in this phase using the ExtraTreesClassifier. These 

features are then used in Phase 2 for training. 

The dataset will be loaded using the Pandas library, and then 

preprocessed using the scikit-learn library using the 

SimpleImputer function for missing values. Feature engineering 

will be performed by using the ExtraTreesClassifier to identify 

the most prominent features. 

 

1) Data Pre-procesing 

The dataset is loaded using the pandas library, the variable 

data is holding the dataset. We drop non numerical values in the 

dataset, such as ID, MD5 and legitimate as they are not relevant 

for feature engineering. Then, by using the imputer library, 

missing values are filled using the strategy=’mean’ in the empty 

values each column. The .csv file contains a lot of rows, hence 

using the imputer library is useful as it produces meaningful 

results compared to a set value by the user. 

 

2) Feature Selection using ExtraTreesClassifier 

To perform the feature selection, an extra trees classifier is 

selected. The Extra Trees classifier is a useful method for feature 

selection as it allows for the identification of the most important 

features in a dataset for a given classification task. The process 

involves training the classifier on the dataset, and then using the 

feature importance attribute to determine the importance of each 

feature. The feature importance’s are computed as the average 

decrease in impurity from splitting the data on that feature. The 

top k features with the highest importance score can then be 

selected and used to train the classifier. This method can be 

implemented using the scikit-learn library in Python by 

importing the ExtraTreesClassifier, fitting it to the training data, 

and accessing the feature_importances attribute. This method 

can be useful in high dimensional datasets where there are many 

features, and the goal is to reduce the dimensionality while 

keeping the most informative features. Figure 5 shows feature 

heatmap in Meraz'18 dataset. 

 

 
 

Fig. 5. Feature Heatmap in Meraz'18 dataset 

 

 

B. Phase 2: Development of Malware Detection and  

 

Classification Model. 

In this second phase of the research, which utilizes machine 

learning techniques, a series of crucial steps are undertaken, 

encompassing comprehensive training of the model and 

meticulous hyperparameter tuning using Bayesian 

Optimisation to optimise its performance and enhance its 

efficacy in identifying and classifying zero-day malware. Table 

II shows the hyperparameters selected for tuning Random 

Forest. 

 
TABLE II. Hyperparameters selected for tuning Random Forest 

 

Hyperparameter Description 

n-estimators Numbers of tree in ensemble 

max-depth Maximum level of trees 

min-samples-split 
Minimum samples required to be split (in a 

internal node) 

min-samples-leaf Minimum number of samples in a leaf node 

max_samples Max samples to use for each tree in the 

ensemble. 

max_features This determines the max number of features to 

consider when looking for the best split. 

class_weight Handles class imbalance. When set to 

balanced, the algorithm adjusts the class 

weights inversely proportional to class 
frequencies. 

 

 

The n_estimators, max_depth, min_samples_split and 

min_samples_leaf are selected based on Table III. These are the 

common values selected when tuning a random forest 

classification task. [20]. Then, an instance of 

BayesianOptimisation is created with parameters from 

param_bounds_rf and as well as the objective function, is 

called. Maximise is called in order to start the optimisation 

process and then the best parameters are selected and printed. 
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TABLE III. Hyperparameter selected for tuning XGBoost 

 

Hyperparameter Description 

n-estimators Numbers of tree in ensemble 

max-depth Maximum level of trees 

min-samples-split 
Minimum samples required to be split (in a 

internal node) 

min-samples-leaf Minimum number of samples in a leaf node 

 

 

Similar to Random Forest, the methods are the same, with a 

few differences in hyperparameters, as XGBoost is a Boosting 

ensemble learning methods. Learning_rate, max_depth, 

subsample, colsample_bytree, gamma, scale_pos_weight are 

selected to be optimised based on the XGBoost. These 

XGBoost parameters are the most common to be optimised 

[19]. Then, an instance of BayesianOptimisation is created with 

parameters from param_bounds_xgb and as well as the 

objective function, is called. Maximise is called in order to start 

the optimisation process and then the best parameters are 

selected and printed.  

 

C. Phase 3: Performance Comparison of trained machine 

learning models. 

 

After training the selected machine learning algorithms, the 

performance of each machine learning model is evaluated. This 

evaluation aims to assess the trained machine learning models 

generalize to unseen data and to compare algorithms in terms of 

various selected performance metrics. 

 

VI. RESULTS 

 

From the results in Table IV, it is found that Random Forest 

is the best performing model, having high accuracy, precision, 

recall, f1-score and Cohen’s kappa. shows the comparison of 

XGBoost and Random Forest with hyperparameter tuning and 

without hyperparameter tuning. 

 
Table IV: Algorithm comparison with defined performance metrics. 

 

Metrics Algorithms 

Random 

Forest 

(%) 

XGBoost 

(%) 

 

Random 

Forest 

(%) w/o 
HP 

XGBoost 

(%) 

w/o HP 

Accuracy 98.6 98.50 98.1 98.48 

Precision 98.41 99.1 98.45 98.8 

Recall 98.2 98.59 98.62 98.84 

F1-score 98.50 98.84 98.53 98.82 

Cohen’s 

Kappa score 

96.75 96.72 96.0 96.0 

 

 

The results in Table IV show that hyperparameter 

adjustment significantly affects how well machine learning 

algorithms perform. The results show that hyperparameter 

adjustment significantly affects how well machine learning 

algorithms perform. When comparing the tuned models, 

Random Forest outperforms XGBoost in all metrics. However, 

it is important to note that the differences are very minimal. With 

hyperparameter tuning, XGBoost achieves an Accuracy of 

98.50%, Precision of 99.1%, Recall of 98.59%, F1-score of 

98.84%, and Cohen's Kappa score of 96.72%. On the other hand, 

Random Forest with tuning achieves an Accuracy of 98.6%, 

Precision of 98.41%, Recall of 98.2%, F1-score of 98.84%, and 

Cohen's Kappa score of 96.75%. 

Comparing the untuned models, XGBoost still performs 

better, with an Accuracy of 98.48%, Precision of 98.8%, Recall 

of 98.84%, F1-score of 98.82%, and Cohen's Kappa score of 

96.0%. For Random Forest without hyperparameter tuning, the 

Accuracy is 98.1%, Precision is 98.45%, Recall is 98.62%, F1-

score is 98.53%, and Cohen's Kappa score is 96.0%. 

Hyperparameter adjustment improves model performance, 

however most metrics are similar between the two techniques. 

Hyperparameter tweaking affects datasets and hyperparameters 

differently. In certain circumstances, hyperparameter 

adjustment improves performance significantly, while in others 

it improves performance somewhat. 

 

A. Performance Comparison scenario using Chrome 

Extension 

A sample dataset of 15 samples was used in the performance 

comparison scenario utilizing the Chrome Extension. Ten of 

these samples were determined to be zero-day malware, and five 

to be benign. The effectiveness of the machine learning models 

in correctly identifying the samples was evaluated using the 

confusion matrix. Analysis of the confusion matrix's results 

reveals important information about the models' capacity to 

distinguish between malicious and benign samples in the real-

world application of the Chrome Extension. Table V shows the 

comparison of XGBoost and Random Forest using the chrome 

extension, with models that utilised hyperparameter tuning and 

without hyperparameter tuning. 

 
TABLE V. Comparison of selected algorithms with defined performance 

metrics used in the chrome extension context 

 

Metrics Algorithms 

Random 

Forest 

(%) 

XGBoost 

(%) 

 

Random 

Forest 

(%) w/o 
HP 

XGBoost 

(%) 

w/o HP 

Accuracy 73.33 73.33 60.00 66.67 

Precision 70.00 60.00 50.00 66.67 

Recall 87.5 100.00 83.33 88.89 

F1-score 77.78 75.00 60.25 76.19 

 

 

VII. CONCLUSION 

 

This research has demonstrated the feasibility of utilizing 

machine learning techniques, specifically Random Forest and 

XGBoost, for the detection of zero-day malware. By focusing 

on the extraction of critical features from PE header files, we 

have established a foundation for effective malware 

classification. The successful implementation of feature 

selection methods has underscored the importance of carefully 

selecting informative attributes for enhancing model 

performance. 
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Both Random Forest and XGBoost have exhibited 

promising results in detecting zero-day malware, as evidenced 

by the high accuracy, precision, recall, and F1-score achieved. 

While the performance of these ensemble methods was 

comparable in this study, further investigations into their 

strengths and weaknesses under different dataset distributions 

and malware types would be beneficial. This accomplishment 

illustrates the successful training and improvement of machine 

learning classifiers for precise zero-day malware identification 

and classification. 

To summarise, machine learning is a good contender and 

both ensemble methods are somewhat close in terms of 

performance in classification. Cybersecurity personell can 

leverage machine learning algorithms in detecting zero-day 

malware in where rapid response is required. 

 

VIII. SUGGESTION FOR IMPROVEMENT AND FUTURE WORKS  

 

Bayesian optimization was used in this study as a method for 

hyperparameter tweaking, which was successful in enhancing 

the functionality of the machine learning classifiers. However, it 

might be advantageous to investigate alternate optimization 

methods, like Particle Swarm Optimization (PSO), for future 

work. PSO has showed promise in terms of hyperparameter 

optimization, and it could provide new information and possibly 

boost classifier performance. The robustness and 

generalizability of researchers' models can be further improved 

by taking into account various optimization strategies. 
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