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Abstract—During the last two decades, Wireless Sensor Networks 
(WSNs) have attracted significant attention from researchers and 
sensor manufacturing companies alike. WSNs find applications in 
various environmental monitoring tasks such as weather 
monitoring, temperature observation, humidity measurement, 
and military surveillance. These networks typically consist of 
hundreds to thousands of sensor nodes deployed across the target 
area. Each sensor node is responsible for collecting specific data 
and transmitting it to the processing center. However, several 
constraints, including power consumption, energy-saving 
measures, and deployment costs, limit the functionality of sensor 
nodes. Additionally, the accuracy of transmitted data is influenced 
by the surrounding environment. This paper provides an overview 
of localization algorithms, including centralized and distributed 
algorithms. It also delves into distance measurement techniques 
such as Time of Arrival (ToA), Time Difference of Arrival (TDoA), 
Angle of Arrival (AoA), and Received Signal Strength Indicator 
(RSSI). Methodologies of localization, such as range-based and 
range-free approaches, are discussed, along with various range-
based localization techniques like Sum-Dist-Min-Max, Bounding 
box, geometric methods, and general techniques. The paper also 
examines influencing factors such as noise, path loss, propagation 
model, connectivity, and device limitations and their impact on 
localization measurements. The primary objective of this paper is 
to review localization algorithms based on metaheuristic 
optimization techniques to improve localization accuracy. This 
paper serves as a comprehensive background on localization 
algorithms and methods used in wireless sensor networks, offering 
insights for researchers to develop efficient localization algorithms 
tailored to specific application requirements in diverse work 
environments. 

Keywords—Wireless Sensor Networks, Ranging Model, RSSI, 
Optimization Techniques, Localization Techniques, Measurement 
influencing factors 

I. INTRODUCTION

The development of Wireless Sensor Networks (WSNs) has 
seen rapid growth over the past two decades, driven by 
advancements in wireless communication and sensing devices. 
WSNs, comprising distributed nodes numbering from hundreds 
to thousands, find applications in various environments such as 
environment monitoring, wildlife tracking, healthcare, military 
surveillance, and infrastructure maintenance in factories [1], [2], 
[3]. Despite their wide-ranging applications, WSNs face several 
limitations including node battery depletion, hardware 
issues, node detection, node position estimation, network 
expansion, and deployment costs. One significant challenge is 
the coverage capacity of sensor nodes.  

Localization, or determining the location information of 
sensed data, is crucial for many WSN applications to make the 
collected data meaningful. Localization algorithms play a vital 
role in applications such as monitoring, tracking, and 
geographic routing, which require accurate node coordinates. 
These algorithms aim to assign geographic coordinates to all 
sensed data collected from sensor nodes within the WSN area 
to effectively manage and respond to them [4], [5].  

The growing reliance on devices and sensed data 
necessitates more efficient and accurate localization methods. 
Traditional localization techniques face challenges in 
accurately and cost-effectively localizing all devices and 
Sensor Nodes (SNs), particularly in large deployment areas 
common in Internet of Things (IoT) applications. To address 
these challenges, optimization techniques and mobile anchors 
have been proposed to estimate device positions more 
effectively.  
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During the last ten years, a significant number of localization 
algorithms have been developed for use in 
Wireless Sensor Networks (WSNs). These algorithms employ 
various ranging techniques to determine the distances between 
sensor nodes and anchors. Examples of these techniques 
include Angle-of-Arrival (AOA), Time-Difference-of-Arrival 
(TDOA), and Received Signal Strength Indicator (RSSI). 
Among these techniques, RSSI is particularly popular because 
it is readily available in WSN devices and does not require 
additional equipment or cost. However, the RSSI-based ranging 
method suffers from low precision due to environmental noise 
and other factors.  

Over the past two decades, numerous algorithms have been 
proposed for WSN localization, all sharing the common 
approach of utilizing beacon nodes or anchor nodes to 
determine the positions of unknown nodes. These anchor nodes 
determine their positions either through GPS or manual pre-
programming during installation [5]. Nodes that are distributed 
throughout the environment and cannot determine their 
positions are referred to as unknown nodes. Given the 
limitations of GPS in non-line-of-sight environments and its 
high hardware cost, it may not be suitable for localizing 
unknown nodes [6]. Therefore, there is a need to develop new 
algorithms for localization.  

This paper aims to achieve the following goals: 
• Provide an overview of the sensor device and its 

components. 
• Discuss localization algorithms, including 

centralized and distributed approaches.  
• Explain distance measurement techniques such as 

Time of Arrival (ToA), Time Difference of Arrival 
(TDoA), Angle of Arrival (AoA), and Received 
Signal Strength Indicator (RSSI). 

• Examine localization methodologies, including 
ranged-based and range-free methods.  

• Investigate various influencing factors affecting 
localization measurements, such as noise, path loss, 
propagation models, connectivity issues, and 
device limitations, and their impact on localization 
accuracy.  

• Review localization algorithms based on 
optimization techniques to improve localization 
accuracy. 

The subsequent sections of this paper are structured as 
follow: Section 2 introduces an overview of the sensor devices 
and their components, while Section 3 presents distance 
measurement techniques. Methodologies of localization are 
addressed in Section 4, followed by a description of localization 
influencing factors in Section 5. Section 6 covers the WSN 
network model and propagation model. In Section 7, a review 
of localization algorithms based on optimization techniques is 
provided. Finally, Section 8 concludes the paper with 
recommendations for future research. 

 
II. AN OVERVIEW OF THE SENSOR DEVICE  

 
A sensor device is a crucial component in various industries 

and applications, designed to detect and measure specific 
physical properties or environmental phenomena. These devices 

play a pivotal role in collecting data for monitoring, control, and 
automation systems. The main components of a typical sensor 
device include a sensing unit, processing unit, transceiver unit, 
power unit, and location finding system, [7], [8] as shown in Fig. 
1.  
 

 
 

Fig. 1. Sensor device components 
 
 
Following is a brief introduction to the typical components 
of a sensor device: 

• Sensor unit: This is the core component of the 
sensor that directly interacts with the physical 
parameter it’s designed to measure. It undergoes 
changes in response to variations in the measured 
property, like temperature, pressure, humidity, 
light, or motion.  

• Analog to digital converter (ADC): In many cases, 
the sensing element needs to convert its physical 
response into an electrical signal that can be 
processed and analyzed. The transducer performs 
this conversion, changing physical variations into 
voltage, current, or digital signals.  

• Processing unit: To ensure the accuracy and 
reliability of the measured data, sensor devices 
often include processing unit. This unit may 
amplify, filter, or otherwise modify the raw signal 
to improve its quality and compatibility with 
downstream electronics. This unit always comprise 
processor and memory.  

• Transceiver: This is the communication unit; where 
sensor devices typically have an output interface 
that connects to external systems or devices, 
allowing the processed data to be transmitted or 
displayed for further analysis or action. This can be 
in the form of analog voltage, current, or digital 
signals.  

• Power Supply: Sensors require a power source to 
operate. The power supply can be as simple as a 
battery for portable devices or a more complex 
power management system for larger sensor 
networks. 

The components of sensor devices collaborate to detect, 
measure, and transmit data concerning the physical 
environment, supporting diverse applications like 
environmental monitoring, industrial automation, healthcare, 
and consumer electronics. This synergy enhances the appeal 
and cost-effectiveness of monitoring and tracking applications, 
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especially in expansive deployment areas, as demonstrated by 
the benefits of utilizing Wireless Sensor Networks (WSNs) [9]. 
This advancement paves the way for a future where data from 
millions or even billions of sensor devices can be gathered, 
processed, and leveraged collaboratively within a global 
Internet of Things (IoT) framework [10]. The IoT heralds a 
trans-formative era in internet technology, facilitating seamless 
communication among a vast array of users and devices by 
linking various communication elements through a unified 
networking approach utilizing the internet [11].  

The success of the Internet of Things (IoT) hinges 
significantly on wireless communication and the ability to 
accurately determine the location of connected devices. This 
new generation of technology faces several key challenges, 
including managing energy consumption, storage, device 
diversity, precision localization, and communication 
bandwidth. Additionally, a diverse array of applications within 
this generation requires the ability to locate and interact with 
connected devices effectively. These applications span 
geographic routing, marketing initiatives, data aggregation 
algorithms, and environmental monitoring efforts [12].  

Upon observing the multitude of entities involved, coupled 
with their diverse models and locations, it has become 
imperative to delve into existing localization systems and 
discern their capacity to address both scalability and mobility. 
Furthermore, understanding how these systems can fulfill the 
requirements of prompt and precise localization operations is 
crucial [13]. An integral aspect of the IoT in its latest iteration 
is the accurate determination of sensor node positions [11], 
[14]. In numerous WSNs applications, the data gathered or 
monitored loses its significance without accompanying location 
information. Essentially, processing units cannot effectively 
handle or respond to data collected by sensor nodes lacking 
location data. Therefore, determining the event’s location is 
imperative for taking appropriate action. While one common 
solution involves equipping every sensor node with a Global 
Positioning System (GPS) function to obtain their locations, 
this approach is considered sub-optimal due to its costly 
hardware and limited accuracy in environments lacking line of 
sight.  

Alternatively, a substantial number of localization 
algorithms have been proposed, all operating on the 
fundamental principle of estimating the positions of unlocalized 
sensor nodes based on prior knowledge of the absolute 
positions of certain nodes, referred to as beacons or anchors. 
This process is typically achieved through distance and ranging 
measurements such as signal strength, time of arrival, or 
network information.  

Hence, it is crucial to devise new localization techniques for 
estimating the positions of unlocalized sensor nodes without 
relying on GPS. As mentioned, Wireless Sensor Network 
(WSN) localization algorithms determine the coordinates of 
unlocalized sensor nodes with the assistance of anchor nodes. 
These anchor nodes can either be dedicated to sensor nodes, 
such as base stations, or realized through sensor nodes with 
enhanced capabilities compared to others in the network, 
including the ability to determine their absolute location. 
Anchor nodes are aware of their positions, either through GPS 
services or manual configuration during deployment [12]. In 

the localization process, anchor nodes initially broadcast their 
coordinates along with operational instructions to unlocalized 
sensor nodes. Subsequently, unlocalized sensor nodes utilize 
the received positions of anchor nodes to estimate their own 
positions. 

 
III. DISTANCE MEASUREMENT AND LOCALIZATION 

TECHNIQUES 
 
In most localization algorithms, the localization process 

typically involves two stages. Firstly, the distance or angle 
between unlocalized sensor nodes and anchors is estimated 
using various measurement techniques. Secondly, the obtained 
distance or angle information is utilized in localization 
algorithms to estimate the positions of unlocalized sensor 
nodes. These localization estimation techniques can generally 
be categorized into two methods: centralized and distributed. In 
the centralized method, the localization process is centralized 
within a processing center, where distance or angle information 
collected from the unlocalized sensor nodes is processed to 
determine their positions. On the other hand, in a distributed 
system, each unlocalized sensor node independently estimates 
its own position. While distributed localization techniques offer 
scalability advantages, they do require unlocalized sensor nodes 
to possess sufficient processing power to perform self-
localization. 

 
A. Distance Measurement Techniques 

 
This section provides a comprehensive overview of the 

various measurement techniques utilized by localization 
algorithms to estimate the distance between sensor nodes and 
anchors in WSNs. These techniques can be broadly categorized 
into four main groups: RSSI-based, angle-based, time-based, 
and phase-based, as illustrated in Fig. 2. 

 

 
 

Fig. 2. Distance measurement techniques 
 
 

1) Techniques based on Received Signal Strength Indicator 
(RSSI) 

 
RSSI, or Received Signal Strength Indicator, refers to the 

power level of the signal received by the receiver of WSN nodes. 
It is important to note that the lower the value of RSSI, the greater 
the attenuation of the signal, which occurs due to energy loss 
during transmission through the air. As a result, distance 
measurement techniques utilizing RSSI are based on the 
principle that signal strength exhibits an inverse relationship with 
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the distance between the transmitter and the receiver [15], [16], 
[17], [18], [19], [20]. Therefore, a thorough understanding and 
in-depth study of signal attenuation characteristics are essential 
for establishing the relationship between RSSI and actual 
distance. RSSI models are typically classified into Analytical and 
Empirical models. Analytical models relate RSSI to actual 
distance based on path-loss propagation models, which model the 
electromagnetic wave behavior. In such models, the attenuation 
ratio of the signal over distance is assumed to be known in 
advance. According to the free space theory, RSSI exhibits an 
inverse relationship with the square of the distance (d) between 
the transmitter and the receiver. Based on [21], this relationship 
is formulated using the Friis equation as follows: 

 

 𝑷𝑷𝒓𝒓(𝒅𝒅) =
𝑷𝑷𝒕𝒕 𝑮𝑮𝒕𝒕 𝑮𝑮𝒓𝒓𝝀𝝀𝟐𝟐

(𝟒𝟒𝟒𝟒)𝟐𝟐𝒅𝒅𝟐𝟐
 ( 1) 

Where: 
• Pt is the transmitted power.  
• Gt and Gr are the transmitter and receiver antenna 

gain respectively.  
• λ is the wavelength of the transmitted signal in 

meters. 
 

A widely employed model that utilizes the RSSI function is 
the Lognormal-shadowing model (LNSM), favored for its 
simplicity and the effective correlation between signal 
attenuation and distance. The following formula depicts the 
relationship of the RSSI function in the LNSM: 

 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒅𝒅(𝒅𝒅𝒅𝒅𝒅𝒅) = 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒅𝒅𝟎𝟎(𝒅𝒅𝒅𝒅𝒅𝒅) − 𝟏𝟏𝟎𝟎𝟏𝟏 𝐥𝐥𝐥𝐥𝐥𝐥
𝒅𝒅
𝒅𝒅𝟎𝟎

 + 𝑿𝑿𝝈𝝈 ( 2) 

Where:  
• RSSId illustrates the power of the signal received by 

an unknown node (non-anchor node) from the sender.  
• RSSId0 is the power of the received signal by an 

unknown node at reference distance d0 , usually this 
distance is 1m from an anchor node, and often the 
factory of WSN devices shows the RSSId0 value for 
their products, for example (-45 dBm) in some 
devices [22]. 

• d denotes the distance between an unknown node and 
an anchor node.  

• (10n log d/d0) stands for the Pathloss exponent, 
generally, its value is in the range of 2 to 6.5 
depending on the propagation media or environment 
(see TABLE I).  

• Xσ represents the shadowing factor or the random 
variation in RSS, where It can be defined as a 
Gaussian distributed random variable (in dB) with 
zero mean and σ standard deviation (in dB). 
 

TABLE I. PATH LOSS EXPONENT RANG 
 

Environment N 
Urban macro cells 3.7 - 6.5 
Urban micro cells 2.7 - 3.5 

Office building (same floor) 1.6 - 3.5 
Office building (multiple floors) 2 - 6 

Store 1.8 - 2.2 
Factory 1.6 - 3.3 
Home 3 

One drawback of this technique is that as the distance 
increases, the signal weakens, resulting in a decrease in the 
wireless data rate. This can lead to reduced data throughput and 
errors in distance measurement. 

 
2) Techniques Based on Time 

 
These techniques rely on calculating the propagation time 

taken by the signal to travel between the transmitter and 
receiver. The transmitted signal may be acoustic, 
electromagnetic, or ultrasound. Time-based techniques are 
typically classified into three main categories: 

 
• Time of Arrival (ToA). 
• Round-trip Time of Arrival (RToA).  
• Time Difference of Arrival (TDoA). 

 
In the first category, denoted as ToA (Time of Arrival), as 

illustrated in Fig. 3, the distance between the transmitter and 
receiver is determined using the following equation: 

 
 𝒅𝒅 = 𝑪𝑪𝒓𝒓 × (𝒕𝒕𝟏𝟏 − 𝒕𝒕𝟎𝟎) ( 3) 

Where: 
• Cr refers to the signal speed. 
• t0 and t1 represent the moments of transmission 

and reception respectively as shown in Figure 3.  
 

In the second category, designated as RToA (Round-trip 
Time of Arrival), as depicted in Fig. 4, the measurement of the 
distance between the transmitter and receiver is achieved by 
applying the following formula: 

 𝒅𝒅 = 𝑪𝑪𝒓𝒓 ×
(𝒕𝒕𝟏𝟏 − 𝒕𝒕𝟎𝟎)

𝟐𝟐
 ( 4) 

Where: 
• Cr refers to the signal speed.  
• (t1 - t0) represents the round-trip time of flight as 

shown in Fig. 4. 
 

 
 

Fig. 3. Time of arrival technique 
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Fig. 4. Round-trip time of arrival technique 
 

 
 

Fig. 5. Time difference of arrival technique 
 

In the third category, designated as TDoA (Time Difference 
of Arrival), as depicted in Fig. 5, the measurement of the 
distance between the transmitter and receiver is achieved by 
applying the following formula: 

 
 𝒅𝒅 =

𝑪𝑪𝒓𝒓 × 𝑪𝑪𝒖𝒖 × (𝒕𝒕𝟏𝟏 − 𝒕𝒕𝟎𝟎)
𝑪𝑪𝒓𝒓 − 𝑪𝑪𝒖𝒖

 ( 5) 

Where: 
• Cr and Cu are respectively the propagation speed of 

the RF and ultrasound signals.  
• t1 and t2 are the arrival times at the receiver side for 

both signals respectively as shown in Fig. 5. 
 
A limitation of this technique arises from the necessity to 

synchronize the nodes using synchronous clocks. When the 
synchronization of these clocks is inaccurate, it directly 
translates to imprecise positions, compromising the overall 
effectiveness of the method. 
 

3) Techniques based on Angle 
 
These techniques are categorized based on the method used 

to calculate the angle, with some techniques computing the 

Angle of Arrival (AoA) and others determining the Direction 
of Arrival (DoA). The measurement in these techniques relies 
on calculating the angle between the sensor (unlocalized) node 
and the anchor node relative to a reference direction. This angle, 
also known as orientation [23], is determined based on whether 
the reference direction is absolute or relative. In absolute 
orientation, the reference direction is fixed, typically aligned 
with the North direction, as depicted in Fig. 6. Conversely, in 
relative orientation, the reference direction is known relative to 
the North direction [17], allowing each unlocalized sensor node 
to have its own orientation axis, as illustrated in Fig. 7. 
 

 
 

Fig. 6. Absolute orientation 

 
 

 
 

Fig. 7. Relative orientation 
 

 
 

Fig. 8. Unknown orientation 

 
 
In another scenario where the reference direction is 

unknown, trilateration is employed using three anchor nodes to 
determine the location of the unlocalized sensor nodes. In this 
case, the angle of the third anchor is used to establish the 
reference direction, as depicted in Fig. 8. However, this 
technique is subject to limitations in terms of accuracy, which 
can be affected by environmental factors such as shadowing and 
multi-tracking. 

 
4) Techniques based on Phase of Arrival (PoA) 

 
These techniques rely on the received signal phase to 

estimate the distance between sensor nodes. Phase of 
Arrival (PoA) is based on calculating the phase difference of 
the received signal between the transmitter antenna and receiver 
antenna [24], [25]. However, one disadvantage of PoA is the 
requirement of Line of Sight (LoS) between the transmitter 
antenna and receiver antenna. Additionally, it needs to be 
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combined with Received Signal Strength Indicator (RSSI) and 
Time of Arrival (ToA) to increase accuracy. 

 
B. Localization Techniques 

 
A considerable deal of localization algorithms can be 

classified into different categories, for example:  
 

• Localization algorithms based or not based on 
anchors.  

• Position calculation is distributed or centralized 
[26]. 

 
In the anchor-based category, anchor nodes possess prior 

knowledge of their own positions, either acquired through GPS 
systems or manually during setup. These positions are then used 
to estimate the positions of unknown nodes through trilateration. 
In contrast, the anchor-free category relies on connectivity 
information between unknown nodes and anchor nodes to 
determine the positions of unknown nodes, resulting in relative 
positions. Therefore, the anchor-based category typically 
achieves higher localization accuracy compared to the anchor-
free category. Within the distributed category, unknown nodes 
compute their own positions, leading to potential rapid energy 
consumption. Conversely, in the centralized category, all 
information is processed in a central processing center, 
conserving the energy of sensor nodes. As a result, the 
centralized category is more power-efficient than the distributed 
category [27].  

However, achieving high localization accuracy requires 
addressing sensitive and critical factors such as the number of 
required anchors and power consumption. While algorithms 
with a larger number of anchors tend to achieve higher 
localization accuracy, this also increases the cost and power 
consumption of WSNs. Recently, there has been a shift towards 
using optimization techniques to enhance position estimation 
accuracy instead of traditional techniques like trilateration and 
angulation. These optimization techniques primarily aim to 
enhance the measurement of the Received Signal Strength 
Indicator (RSSI) technique. They encompass Particle Swarm 
Optimization (PSO) and its variants [26], Differential Evolution 
(DE), Pattern Search (PS), Ant Colony Optimization (ACO) 
[28], Genetic Algorithm (GA) [29], and Local Unimodal 
Sampling (LUS). 

 
IV. METHODOLOGIES OF LOCALIZATION 

 
Localization measurement techniques are classified into 

two categories relied on the number of hops.  
 

• One-hop.  
• Multi-hop. 

 
This paper exclusively examines the one-hop technique, 

where an unlocalized sensor node can achieve localization if it 
has sufficient one-hop connectivity to neighboring anchors. The 
primary localization techniques based on the one-hop model 
include Multilateration, Bounding Box, and Angulation. 
Multilateration and Angulation utilize Linear Least Squares for 

their calculations. Multilateration and Bounding Box estimate 
the position of the unlocalized sensor node based on distance 
measurements, while Angulation relies on Angle of Arrival 
(AoA) for position estimation. 

 
A. Multilateration 

 
Multilateration is a conventional localization technique that 

utilizes distance measurements, typically obtained through 
techniques like RSSI or ToA, to estimate the positions of 
unlocalized sensor nodes. 

 
B. Bounding Box 

 
Another computationally efficient localization technique, 

known as the Bounding Box or min-max algorithm, offers an 
alternative to Multilateration. In this method, rectangles are 
used instead of circles to estimate the positions of sensor nodes, 
as depicted in Fig. 9. Each anchor node is surrounded by a 
rectangle, the dimensions of which are determined by the 
anchor node’s location and the estimated distance to the sensor 
node. The estimated location of the unlocalized sensor node is 
then determined by finding the center of the intersection 
of all rectangles. The Bounding Box method is noted for its 
ability to provide accurate solutions close to those obtained 
through Multilateration while requiring lower computational 
resources. 

 

 
Fig. 9. Bounding box technique 

 
 

C. Localization using Angulation 
 
Another method for estimating the location of sensor nodes 

is Angulation, which utilizes angle information and properties 
of triangles to calculate the positions of unlocalized sensor 
nodes, as illustrated in Fig. 10. As discussed previously in the 
section on angle-based techniques, sensor nodes can be 
localized in a 2D space using two anchor nodes, employing 
triangulation. However, in a 3D space, triangulation requires 
additional information which is the height of the location of 
anchor nodes. 
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Fig. 10. Angulation method scenario 
 
 

D. Localization using Sum-Dist-Min-Max Method 
 
The SumDistMinMax method operates by first allowing 

anchor devices to broadcast their respective positions. When  a 
sensor device  (an unknown node ) (X) detects the position of an 
anchor node (Y), it estimates the distance between them using 
the Sum-Dist approach. Sum-Dist approach serves as a 
fundamental technique for determining distances to anchor 
nodes. Each anchor node in the Wireless Sensor Network 
(WSN) transmits a message containing its ID, coordinates, and 
an initialized path length of zero. Upon receiving this message, 
the sensor device (an unknown node) calculates the distance 
from the sender, adds it to the path length, and then rebroadcasts 
the updated message [30]. 

 

 
 
Through this process, each sensor node in the network 

derives an estimated distance to multiple anchors. However, 
only the shortest distance is considered for position estimation. 
The Sum-Dist approach is advantageous due to its speed and 
minimal computational requirements. Despite these benefits, a 
major limitation is the accumulation of range errors when 
distance information propagates across multiple hops. To refine 
the position estimation, the final step employs the MinMax 
method. This technique attempts to establish a bounding box that 
encompasses the unknown sensor node. The estimated position 
of the node is then determined by calculating the center of 

gravity of this box. This process effectively enhances the 
localization accuracy, as depicted in Fig. 11 

 
E. Localization Using Mobile Anchor 

 
The localization techniques discussed earlier primarily rely 

on static anchor nodes. However, there is a growing trend 
towards utilizing mobile anchors instead of static ones. This 
trend aims to reduce the required number of anchor nodes in the 
target area and address the limitations associated with the 
transmission range of static anchors [31]. Mobile anchors move 
through the target area, scanning it and collecting signals from 
unlocalized sensor nodes to estimate their locations. 
Localization based on mobile anchors offers a cost-effective 
solution for WSN applications, as a single mobile anchor can 
serve the purpose of multiple static anchors in the same 
target area [13], [32], [33], [34]. 

 
F. Localization Using Optimization Techniques 

 
Contemporary trends in localization methodologies within 

Wireless Sensor Networks (WSNs) have shifted towards the 
adoption of optimization techniques, departing from 
conventional estimation approaches. These optimization 
methodologies show promise in enhancing localization 
precision, especially in measurements reliant on Received 
Signal Strength Indication (RSSI). Various optimization 
methods have been employed in WSN localization, including 
black box optimization techniques such as Pattern Search (PS), 
Differential Evolution (DE), Particle Swarm Optimization 
(PSO) and its variants [35], Genetic Algorithm (GA) [36], 
Local Unimodal Sampling (LUS), Intelligent Water Drops 
(IWD) algorithm [37], and Ant Colony Optimization (ACO) 
[38].  

Additionally, hybrid techniques have emerged, combining 
advantageous features from different optimization methods, 
such as the hybrid of Particle Swarm Optimization with 
Variable Neighborhood Search (HPSOVNS) [39], graph 
embedding with polynomial mapping (GEPM), Improved Self-
Adaptive Inertia Weight Particle Swarm Optimization 
(ISAPSO), and many others.  

The main aim of this paper is to provide an extensive 
examination of localization algorithms that utilize optimization 
techniques to enhance localization accuracy. This review will 
explore the different optimization based strategies employed in 
localization, evaluating their effectiveness and impact on 
improving localization precision. Furthermore, we will 
investigate the essential factors, methodologies, and recent 
developments in localization algorithms, particularly focusing 
on optimization approaches. By doing so, this review seeks to 
contribute to a better understanding of how optimization 
contributes to the refinement of localization methods and its 
significance across various applications and industries. The 
following Table II outlines the advantages and disadvantages of 
the aforementioned localization methods. 

 

 
 

Fig. 11: Mix max method 
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TABLE II. ADVANTAGES AND DISADVANTAGES OF LOCALIZATION METHODS 
 

Method Advantages Disadvantages 

Multilateration 
1: Provides acceptable localization accuracy when 

distances are measured accurately. 
-2: Performs well with a high density of anchors. 

1: Requires high precision in distance measurements. 
2: Affected by noise and signal attenuation. 

3: Performance declines in NLOS conditions. 

Bounding Box 1: Simple method with efficient computation. 
2: Does not require complex calculations. 

1: Less accurate compared to other methods. 
2: Performance depends on the status and placement of 

anchors. 

Angulation 
1: High accuracy when angle measurements are precise. 

2: Requires fewer anchor nodes compared to 
multilateration. 

1: Sensitive to measurement errors. 
2: Requires special hardware for implementation. 

SumDistMinMax 1: Fast and computationally efficient method. 
2: Requires minimal resources. 

1: Accumulated errors from multi-hop distance 
propagation. 

2: Accuracy is affected by node density and WSN 
topology. 

Mobile Anchor 
1: Increases accuracy with a minimal number of anchors, 

starting from one mobile anchor. 
2: Can be used in inaccessible environments. 

1: Implementation requires more time due to anchor 
movement. 

2: Higher energy consumption for moving anchors. 

Optimization Techniques 1: Achieves high localization accuracy even in noisy 
WSNs. 2: Can mitigate errors from traditional methods. 

1: Implementation is complex and requires a powerful 
processing unit. 

2: Efficiency depends on the optimization algorithm 
used. 

 
 

V. LOCALIZATION INFLUENCING FACTORS 
 
As stated previously, localization in wireless sensor 

networks (WSNs) refers to the method of estimating the actual 
locations of sensor nodes in the network. Accurate localization 
is essential for the majority of WSN applications, such as 
environmental monitoring, target tracking, and asset 
management. There are several factors that can influence the 
accuracy and reliability of localization in WSNs as follows: 

 
1. Sensor Node Capabilities:  
• Hardware Sensors: The type and quality of sensors (e.g., 

GPS, accelerometer, ranging sensors) used by sensor nodes 
play a significant role in localization accuracy.  

2. Localization Techniques:  
• Range-Based vs. Range-Free: The choice between range-

based (e.g., distance measurements) and range free (e.g., 
connectivity-based) localization techniques can impact 
accuracy and complexity.  

• Multilateration: Techniques based on measuring distances 
between nodes can be affected by the precision of distance 
measurements.  

3. Anchor Nodes:  
• Anchor Placement: The deployment and placement of 

anchor nodes with known locations in the network can 
significantly improve localization accuracy.  

4. Communication Environment:  
• Signal Propagation: Signal propagation conditions, 

including obstacles, multipath fading, and interference, can 
affect the accuracy of distance measurements and ranging-
based techniques.  

• Communication Range: The maximum communication 
range between nodes can impact the network’s ability to 
determine neighbor nodes.  

5. Network Density:  
• Node Density: Higher node density can lead to better 

localization accuracy as there are more reference points for 
ranging and triangulation.  

6. Localization Algorithms:  
• Algorithm Selection: The choice of localization algorithm, 

such as trilateration, fingerprinting, or probabilistic 
methods, can influence accuracy.  

• Error Models: The accuracy of error models used by 
localization algorithms affects their performance.  

7. Clock Synchronization:  
• Time Synchronization: Synchronized clocks among sensor 

nodes are critical for time-of-flight-based distance 
measurements.  

8. Environmental Conditions:  
• Temperature and Humidity: Environmental factors can 

affect signal propagation and sensor node behavior.  
9. Node Mobility:  
• Mobile Nodes: In scenarios with mobile sensor nodes, 

continuous updates of node positions are required.  
10. Wireless Communication Range Estimation:  
• Received Signal Strength Indicator (RSSI): Estimations of 

signal strength can be used for localization, but they are 
susceptible to interference and signal variations.  

11. Power Constraints:  
• Energy Efficiency: Localization methods must consider 

the energy constraints of sensor nodes and minimize power 
consumption during localization operations.  

12. Localization Infrastructure:  
• Localization Beacons: The presence and positioning of 

dedicated localization beacons or reference nodes can 
improve accuracy.  

13. Anchoring and Calibration:  
• Calibration Procedures: Regular calibration and anchor 

maintenance are essential to ensure the accuracy of anchor 
nodes.  

14. Geometric Configuration:  
• Network Shape: The shape and layout of the network can 

affect the accuracy of localization techniques.  
15. Error Mitigation:  
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• Error Correction: Techniques for error mitigation and 
outlier detection can improve localization results.  

16. Deployment Strategies:  
• Random vs. Deterministic Deployment: The choice of 

deployment strategy, whether random or deterministic, can 
influence the network’s geometry and accuracy. 
Addressing these influencing factors and selecting 
appropriate localization techniques and algorithms based 
on the specific WSN application are crucial for achieving 
accurate and reliable node localization. Additionally, 
ongoing monitoring and maintenance are essential to 
maintain localization accuracy over time. 

 
VI. NETWORK MODEL AND PROPAGATION MODEL 

 
A. Network Model 

 
A significant number of localization algorithms for Wireless 

Sensor Networks (WSNs) operate under the assumption that the 
network comprises anchor nodes and sensor nodes (referred to 
as unknown nodes), as illustrated in Fig. 12. Sensor nodes are 
dispersed randomly throughout the target sensing area and 
receive beacon messages transmitted by anchor nodes. The main 
role of anchor nodes is to broadcast anchor signals, enabling 
unknown sensor nodes to determine their respective locations. 
Each sensor node gathers RSSI information from anchor signals 
over a fixed period. WSNs models operate based on the 
following assumptions: 

 
• The wireless network remains static post-

deployment, with sensor nodes distributed 
randomly across a two-dimensional geographic 
area, thereby forming the wireless network. These 
nodes main 1tain fixed positions after 
deployment. 

• A single Sink main node is positioned at a 
relatively stationary location outside the WSN, 
serving as the primary connection point to the 
main processing unit. 

• The network comprises N static anchor nodes, 
whose positions are predetermined either through 
GPS or other methods, such as manual pre-
programming during deployment, along with M 
unknown nodes. 

 

 
Fig. 12. Network model 

 
 

B. Localization System Stages 
 
The implementation of any localization system typically 

involves four distinct stages, as illustrated in Fig. 13: 
 

• Distance Calculation Stage: This initial stage 
entails computing distances using various distance 
measurement techniques outlined in subsection 3.1. 
These techniques are paired with an appropriate 
radio propagation model that describes the 
relationship between distance and signal power. 

• Position Calculation Stage: Following the distance 
calculation stage, this second stage focuses on 
estimating the positions of unknown nodes. 
Traditional approaches such as multilateration or 
angulation are commonly utilized for this purpose.  

• Localization Algorithm: The pivotal stage in the 
localization system, where the information 
obtained from the previous stages is processed to 
estimate the positions of sensor nodes with high 
localization accuracy. 

• Evaluation Stage: This final stage is dedicated to 
evaluating the effectiveness of the localization 
algorithm. It involves assessing various metrics 
such as localization error, localization rate 
percentage, and implementation time to give decide 
about the algorithm's performance. 
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Fig. 13. Localization system stages 

 
 

C. Radio Propagation Models 
 
Propagation models elucidate how to forecast the average 

received signal strength (RSS) at a given distance from the 
transmitter, as well as the variability of signal strength in close 
spatial proximity to a specific location [5]. In scientific 
literature, and during 40 years, numerous studies have 
developed various models for propagation in indoor and outdoor 
environments [26] and [40]. When distance measurement 
techniques rely on RSSI, the Lognormal shadowing model 
(LNSM) is a suitable choice for propagation modeling. This 
selection is attributed to its simplicity and its close 
correspondence with the relationship between signal attenuation 
and distance, as depicted in Equation (2) in subsection 3.1.1. 

Then the distance between unknown node and anchor node 
can be calculated as follows: 

 
 𝒅𝒅 = 𝟏𝟏𝟎𝟎

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒅𝒅𝟎𝟎−𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝒅𝒅+𝑿𝑿𝝈𝝈
𝟏𝟏𝟎𝟎𝟏𝟏  ( 6) 

 
To determine the coordinates of any unknown node, it is 

necessary to obtain the distance between the unknown node and 
at least three anchors located under the coverage. Once the 
distances to three or more anchors are determined using 
Equation 6, the coordinates of the unknown node can be 
calculated through trilateration. It's important to acknowledge 
that in any ranging technique model, there will be measurement 
errors, commonly resulting from noisy range estimations in 
practical localization systems. The precision of the position 
estimation stage is greatly affected by these imprecise range 
measurements. Apart from geometric approaches like 
multilateration, alternative methods such as optimization 

techniques can be employed to minimize the calculation error in 
the coordinates of unknown nodes. 

 
D. Objective Function Formulation 

 
As previously mentioned, the primary objective of WSN 

localization algorithms is to determine the positions of 
unknown nodes using information about the positions of anchor 
nodes. This process can be defined as an optimization problem, 
with the objective function guiding the search for the most 
appropriate solution. Many metaheuristic optimization-based 
localization algorithms employ the circular positioning 
algorithm to formulate the objective function for solving the 
localization problem. The fundamental concept of this 
algorithm is to identify the (x, y) position of the unknown node 
that minimizes the sum of squared errors in the set of estimated 
distances. Let (Xi, Yi) represent the position of anchor node i, 
where i, (i = 1, 2. . .  N) (N being the number of anchor nodes). 
The calculated distances (di) between an unknown node and 
anchor nodes are determined by the ranging model, assuming 
the use of the Lognormal Shadowing Model (LNSM). The 
squared error of the calculated distances is defined as follows: 

 

 𝜺𝜺 =
𝟏𝟏
𝑵𝑵
���(𝑿𝑿𝒊𝒊 − 𝒙𝒙)𝟐𝟐 + (𝒀𝒀𝒊𝒊 − 𝒚𝒚)𝟐𝟐 − 𝒅𝒅𝒊𝒊�

𝟐𝟐
𝑵𝑵

𝒊𝒊=𝟏𝟏

 ( 7) 

 
Equation 7 is supposed as the objective function or the 

fitness function f (x, y) as follows:  
 

 𝒇𝒇(𝒙𝒙,𝒚𝒚) =
𝟏𝟏
𝑵𝑵
���(𝑿𝑿𝒊𝒊 − 𝒙𝒙)𝟐𝟐 + (𝒀𝒀𝒊𝒊 − 𝒚𝒚)𝟐𝟐 − 𝒅𝒅𝒊𝒊�

𝟐𝟐
𝑵𝑵

𝒊𝒊=𝟏𝟏

 ( 8) 

Where: 
• N ≥ 3 denotes the number of anchor nodes within 

the transmission range of unknown node.  
• (Xi, Yi) is the position’s coordinate of ith anchor 

node.  
• (x, y) is the position’s coordinate of an unknown 

node.  
• di is the calculated distance between one unknown 

node and anchor i. 
 

VII. RELATED WORKS OF LOCALIZATION 
ALGORITHM BASED ON OPTIMIZATION TECHNIQUES 

 
The literature contains various surveys focusing on 

Wireless Sensor Networks (WSNs), covering topics such as 
protocols, applications, and localization algorithms, which can 
be referenced in the following citations: [2], [41], [4], [42], [43], 
[44], [45], [46]. As mentioned earlier in this paper, there is a 
visible trend towards the adoption of optimization techniques 
over traditional estimation methods in the localization process. 
This shift is driven by the capability of optimization techniques 
to enhance localization accuracy, particularly in scenarios 
reliant on Received Signal Strength Indication (RSSI) 
measurements. In the field of WSN localization, optimization 
techniques have been extensively deployed, fostering valuable 
exploration aimed at improving accuracy within this field.  
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In [47], the authors devised an algorithm that utilized a 
mobile anchor, employing Ant Colony Optimization for path 
planning. Additionally, they implemented a centroid-weighted 
localization algorithm to estimate the positions of unknown 
nodes. Simulation results demonstrated that the proposed 
algorithm outperformed traditional centroid algorithms in terms 
of localization precision. In [48], the authors developed 
localization algorithms leveraging Genetic Algorithms to 
address the challenge of low positioning precision with minimal 
anchor nodes, achieving high accuracy. Simulation results 
indicated that only three anchor nodes were sufficient 
for optimal location estimation. In [49], the authors leveraged 
Ultra-Wideband (UWB) technology to enhance localization 
accuracy. Their evaluation was conducted through simulation, 
with results indicating satisfactory algorithm efficiency.  

In [50], the authors utilized sunflower optimization (SFO) 
to improve localization accuracy, building upon the DV-HOP 
algorithm. Their results showcased a significant enhancement 
in localization accuracy compared to conventional methods. In 
[51], the authors employed the Nystrom method in conjunction 
with locally linear embedding (NLLE) to approximate node 
positions, introducing a novel technique to boost localization 
accuracy. Results indicated that the proposed NLLE algorithm 
achieved notably high localization accuracy, surpassing other 
compared algorithms by up to 30.02%. The comparison was 
conducted against MDS-AEKF and MDS-AUKF algorithms. 
Notably, the authors did not consider additional performance 
factors such as noise and localization time in their evaluation. 
In [52], the authors proposed a WSN localization approach 
based on a novel method called graph embedding with 
polynomial mapping (GEPM). They evaluated GEPM’s 
performance across various factors including the number of 
anchors, communication range, and noise levels. Their findings 
suggested that GEPM can achieve high accuracy, particularly 
in smaller areas with low noise conditions.  

In [53], the authors employed the Particle Swarm 
Optimization (PSO) algorithm for the localization process in 
WSNs. Through performance evaluation, they concluded that 
their PSO-based localization algorithm achieved higher 
accuracy compared to other algorithms that relied on simulated 
annealing. In [54], an enhanced version of the DV-Hop 
algorithm integrated PSO to improve localization accuracy. 
Simulation results demonstrated that this new iteration of the 
DV-Hop algorithm, enhanced by PSO, was notably effective 
compared to the traditional DV-Hop algorithm, achieving a 
high localization coverage rate. 

In [55], the authors proposed leveraging basic PSO 
optimization techniques along with RSSI to enhance 
localization precision. They applied their approach similarly to 
the DV-distance method to improve localization success ratios. 
Experimental results and comparisons indicated that the 
proposed algorithm outperformed others in terms of both 
accuracy and node access ratio. In [56], the authors introduced 
a hybrid model that combines fuzzy logic and an Extreme 
Learning Machine with a Vector Particle Swarm Optimization, 
termed HVP-FELM, for localization. Their study focused 
solely on average localization error, considering factors such as 
communication range and the number of anchors. In the best 
case scenario, the localization error was approximately 1.5m. 

However, the authors did not evaluate the impact of noise on 
the localization process. In [57], the authors employed 
Cooperative Distributed Particle Swarm Optimization 
(CDPSO), a new version of PSO, to accurately determine node 
positions. Their study concluded that the proposed algorithm 
surpassed other localization algorithms in terms of localization 
error and complexity. However, the evaluation did not consider 
influencing factors such as the number of anchors or noise.  

In [58], the authors introduced a modified rat swarm 
optimizer (MRSO) to enhance node localization in wireless 
sensor networks (WSNs). Comparative evaluations with the 
original RSO and other metaheuristic algorithms demonstrated 
that MRSO consistently outperformed them. Notably, MRSO 
significantly reduced the Average Localization Error (ALE) 
compared to RSO and other algorithms, achieving reductions 
of68.52% (RSO), 71.75% (bat optimization algorithm), 70.58% 
(BOA variant 1), and 66.81% (BOA variant 2).  

The study in [59] introduces the Optimized Localization 
Learning Algorithm (OLLA) and evaluates its performance 
against established localization-based learning algorithms such 
as APIT, LAEP, RANN, and SPSO in both indoor and outdoor 
settings. Assessment metrics including absolute localization 
error, relative localization error, root mean square error, and 
anchor node probability distribution were utilized. The results 
demonstrate that OLLA exhibits robust performance in both 
environments. Furthermore, the paper provides a succinct 
comparison of various localization-based learning algorithms, 
highlighting their respective strengths and weaknesses.  

In [60], the authors propose an enhanced particle swarm 
optimization algorithm named "Improved Self Adaptive Inertia 
Weight Particle Swarm Optimization (ISAPSO)" for wireless 
sensor network (WSN) localization. ISAPSO is designed based 
on the convergence conditions and initial search space 
characteristics of the PSO algorithm. Comparative evaluation 
with two other PSO-based location estimation algorithms 
illustrates that ISAPSO outperforms its counterparts in terms of 
positioning accuracy, power consumption, and real-time 
performance across diverse scenarios, including variations in 
beacon node proportions, node densities, and ranging errors.  

In [61], the authors introduced HADENM, an advanced 
algorithm that combines adaptive differential evolution (ADE) 
and Nelder-Mead (NM) methods to estimate passive target 
positions. HADENM incorporates adaptive parameter updates 
in ADE to balance global and local optimization and leverages 
NM to enhance exploitation. Simulation results demonstrate 
HADENM’s capability to achieve the Cramer-Rao lower bound 
(CRLB) and outperform constrained weighted least squares 
(CWLS) and differential evolution (DE) algorithms. These 
findings underscore HADENM’s accuracy and robustness for 
localization processes across various noise levels.  

In [62], the authors proposed FPSOTS, a novel approach for 
localization in Wireless Sensor Networks (WSN) using 
optimization techniques. FPSOTS improves upon the Particle 
Swarm Optimization (PSO) method by integrating tabu search 
to expedite convergence towards enhanced solutions. By 
employing the Received Signal Strength Indicator (RSSI) 
method for inter-sensor distance assessment, FPSOTS is 
evaluated via Matlab simulations. The authors concluded that 
FPSOTS achieves rapid convergence and superior accuracy 



Bassam Gumaida & Adamu Abubakar Ibrahim / IJIC Vol. 15 No. 1 (2025) 1−15 
 

12 

compared to other approaches, surpassing HPSOVNS, NS-
IPSO, ECS-NL, and GTOA by 40%, 35%, 44%, and 22%, 
respectively.  

In [63], the authors introduced two distinct localization and 
tracking estimation methods designed for Wireless Sensor 
Networks (WSNs). The first method follows a conventional 
approach, relying on the Long Normal Shadowing Method 
(LNSM), while the second approach utilizes a hybrid PSO-
GRNN (Particle Swarm Optimization - Generalized Regression 
Neural Network) algorithm. By combining PSO with GRNN, 
the hybrid algorithm optimizes the spread constant (σ) to 
enhance localization accuracy significantly. Comparative 
performance evaluations against the conventional LNSM-based 
approach and previous algorithms used in related studies 
revealed that the hybrid PSO-GRNN algorithm outperforms 
the traditional LNSM method by achieving notably lower Mean 
Absolute Error (MAE) and Root Mean Square Error (RMSE) 
scores. This addresses the significant localization errors 
observed with the traditional LNSM method. 

In [64], the authors proposed an enhanced DV-Hop 
localization algorithm based on Selective Opposition Class 
Topper Optimization (SOCTO). This algorithm focuses on 
optimizing the computation of the average hop size with the 
weight of beacon nodes to reduce localization errors within the 
estimated distance between the beacon and the unknown node. 
Results demonstrate that the proposed approach outperforms 
the basic DVHop technique and related techniques in terms of 
average localization error. In [54], the authors employed the 
basic PSO approach and utilized Received Signal Strength 
Indicator (RSSI) to enhance localization precision in WSNs. 
Their algorithm, implemented similarly to DV-Hop distance, 
further improves localization success rates. Experimental 
results and comparisons indicate that the proposed approach 
exhibits better performance in terms of localization accuracy 
and node access ratio. Other works utilizing the basic version 
of PSO to refine accuracy can be found in papers [65], [66], and 
[3]. 

In [67], the authors introduced three variants of the Naked 
Mole-Rat Algorithm (NMRA) designed to enhance its 
exploration and exploitation capabilities. These variants were 
evaluated using the CEC 2019 benchmark functions, serving as 
benchmarks for comparison against the foundational NMRA. 
Results demonstrated that the proposed NMRA variants exhibit 
rapid convergence and yield optimal solutions across a majority 
of the benchmark functions. Moreover, the suggested NMRA 
variant outperforms existing localization solutions, 
demonstrating superior performance in terms of localization 
error for both 2D and 3D environments. These findings 
underscore the enhanced capabilities of the proposed NMRA 
variants and their potential applicability in optimization and 
localization scenarios. In [68], the authors proposed two 
variants of the bat optimization algorithm (BOA) aimed at 
improving the efficiency of sensor node localization by 
addressing limitations of the original BOA, particularly its 
susceptibility to local optimum solutions. Modifications in 
BOA variants 1 and 2 enhance exploration and exploitation 
features through improved global and local search strategies. 
Extensive simulations with varying numbers of target and 
anchor nodes were conducted to evaluate their performance. 

Results showed that both proposed variants outperform other 
algorithms in mean localization error, number of localized 
nodes, and localization time. A detailed comparative analysis 
revealed that BOA variant 2 excels in various error metrics and 
localization efficiency, making it more effective than variant 1, 
the original BOA, and other existing optimization algorithms.  

In paper [69], the authors introduced a novel approach 
called the Centroid Localization Algorithm based on the Social 
Spider Optimization Algorithm (CLA-SSO). This method aims 
to improve the localization capabilities of the basic Centroid 
Localization Algorithm (CLA), which is a range-free 
localization technique. The CLA-SSO method integrates the 
Social Spider Optimization metaheuristic (SSO) to optimize the 
initial spider locations obtained from CLA. Through extensive 
simulations, the authors systematically varied parameters 
such as transmission radius, anchor node ratio, and the number 
of unknown nodes. The results indicated that the CLA-SSO 
algorithm outperforms the basic CLA in terms of localization 
accuracy.  

In paper [70], a novel range-free localization solution for 
wireless sensor networks was presented by the authors. This 
approach combines geometric constraint and hop progress-
based methods. It categorizes anchor node pairs and utilizes 
geometric information to determine the position of target or 
unknown nodes, addressing challenges posed by anisotropic 
factors in various WSN topologies. Leveraging the Jaya 
algorithm and a range free method for selecting reliable anchor 
pairs, the proposed approach was compared with existing 
methods like DV-max Hop, PSO, and QSSA-based localization 
algorithms. The results demonstrated enhanced localization 
accuracy, particularly with varying anchor nodes and node 
density, while considering factors like irregularity and 
computation time.  

In [71], a novel and cost-effective localization solution 
utilizing Unmanned Aerial Vehicles (UAVs) was introduced by 
the authors. They optimized the flying altitude to define node 
localization as a least square optimization problem, considering 
the impact of UAV altitude on accuracy. Addressing limitations 
in classical multilateration with received signal strength 
indicators, the study advocates for least square localization 
employing optimization techniques. Specifically, the authors 
utilized the Artificial Bee Colony (ABC) algorithm to optimize 
UAV anchors, aiming to minimize localization error. Through 
comprehensive simulation analysis, the effectiveness of the 
ABC localization scheme for enhanced accuracy in UAV-based 
localization was demonstrated.  

In [72], the RA-GN algorithm was implemented within a 
localization system, and experimental evaluations were 
conducted using data from a measurement campaign in a semi-
forest test field. The study also examined the effects of rotating 
the tag, representing the vehicle, and observed changes in 
position estimation accordingly. By conducting a comparative 
analysis of root mean square error metrics against a commercial 
system, the authors found that the RA-GN algorithm 
significantly improves accuracy, particularly in real and 
crowded environments. They showed that the proposed 
algorithm remains effective even in challenging scenarios with 
signal perturbations caused by obstacles and variations in the 
angular positions of the tag relative to the anchors. Other works 
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employing optimization techniques to enhance accuracy are 
documented in references [73], [74], [75], [76] and [77]. 

 

VIII. SUMMARY AND CONCLUSIONS 
 

This paper extensively explored key approaches to 
localizing wireless sensor networks, employing various 
techniques encompassing both anchor-free and anchor 
dependent methodologies. The discussion spanned distributed 
and centralized techniques, offering a comprehensive 
examination of the entire localization loop. The paper delved 
into the limitations that hinder the efficiency of position 
techniques, shedding light on the importance, advantages, and 
disadvantages of these approaches. Techniques such as 
Received Signal Strength Indication (RSSI), Time of Arrival 
(TOA), Angle of Arrival (AoA), and Optimization techniques 
were scrutinized, providing a nuanced understanding of their 
applications and implications. Acknowledging the limitations 
resulted from the manufacturing constraints on sensor devices 
and the precision required for localization in Wireless Sensor 
Network (WSN) applications, particularly those dependent 
on distance calculation, Centralized localization schemes based 
on Received Signal Strength Indication (RSSI) were appointed 
as a cost-effective and satisfactory solution. However, the RSSI 
technique is not without its shortcomings, notably in terms of 
low measurement accuracy. To address this drawback, 
numerous researchers have strategically employed optimization 
techniques to achieve heightened accuracy in WSN 
localization. This paper aimed to illuminate various 
optimization techniques utilized for enhancing measurement 
accuracy and underscore the merits associated with their 
implementation.  

This paper concluded that optimization techniques exhibit 
high efficiency and the ability to address the issue of low 
measurement accuracy associated with RSSI technology. 
Additionally, it asserted that each optimization technique has 
its own set of advantages and disadvantages that differ from 
those of other techniques. Therefore, one can leverage the 
advantages and mitigate the shortcomings by integrating these 
technologies to create a hybrid solution, as demonstrated in 
several works mentioned in the literature review.  

This paper offered researchers a comprehensive 
understanding of a localization algorithm based on optimization 
techniques for locating nodes in outdoor environments. This 
empowers researchers to develop valuable algorithms that 
employ either a single optimization technique or combine these 
strategies to create hybrid algorithms. The overarching 
objective of these algorithms is to precisely determine the 
locations of nodes in WSNs, thereby ensuring effective data 
transmission without interruptions in the network.  

For future work, our plan is to conduct a review focusing on 
optimization techniques-based localization algorithms, 
specifically in indoor environments instead of outdoor ones. 
Additionally, we aim to explore localization algorithms that 
leverage neural network approaches and artificial intelligence. 
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