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Abstract—The efficient and accurate assembly of genomic data is 

a computationally intensive process that demands significant 

computational resources. Traditional sequential approaches often 

struggle to handle genomic data sets increasing volume and 

complexity, leading to prolonged execution times and suboptimal 

results. The study aims to leverage parallel computing capabilities 

by employing the ABySS and Velvet Assembler tools on the MD2 

Pineapple dataset hosted on the Quanta server. By systematically 

evaluating the performance of these tools across varying thread 

counts, the study seeks to identify optimal configurations that can 

enhance the efficiency and accuracy of the de novo assembly 

process, ultimately enabling more rapid and precise genomic 

analysis. The study found that for the ABySS assembler, an 8-core 

and 8-thread configuration exhibited the shortest execution time 

and greatest speedup, while an 8-core and 12-thread setup 

produced similar outcomes, demonstrating ABySS's flexibility to 

adjust to various thread configurations. Velvet assembler 

demonstrated exceptional performance by utilizing 8 cores and 16 

threads for the velvetg command, and 8 cores and 8 threads for 

the velveth command. Significantly, this study provided 

implications for advancing genomic analysis methodologies by 

providing valuable guidance on optimizing the efficiency and 

accuracy of de novo assembly processes through careful selection 

of parallelization configurations, paving the way for future studies 

and applications in genetic data analysis. 

 

Keywords—Parallel Computing, Quanta Server, Abyss, Velvet, 

Transcriptome Analysis 

 

 

I. INTRODUCTION 

 

In recent years, the field of virology has advanced rapidly, 

primarily due to increased access to genomic data. Public 

repositories, such as the National Center for Biotechnology 

Information (NCBI), now house vast libraries of sequenced 

genomes, which enables researchers to find new viral genes 

essential for fighting emerging diseases. Transcriptome 

assembly plays an important role in understanding the functional 

components of genetic material in the field of genomics [1]. 

Efficient computational tools are needed due to the explosion of 

biological data generated by high-throughput sequencing. De 

novo assembly, the process of constructing transcriptomes or 

genomes from short DNA sequences, remains a fundamental yet 

challenging task due to the complexity of gene expression data 

[2]. 

High Performance Computing (HPC) provides the 

computational power necessary to handle these large datasets. 

HPC systems can accelerate de novo assembly by utilising 

parallel processing, making it possible to efficiently process the 

increasing volume of genomic data [3-4]. Transcriptomic 

analysis, a fundamental aspect of genomics, aims to decode an 

organism's gene expression patterns and understand the 

dynamics of its transcriptome [5]. De novo assembly involves 

stitching contiguous sequences (contigs) from short DNA 

fragments obtained through next-generation sequencing [6]. 

Nevertheless, de novo assembly presents significant challenges, 
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including managing sequencing errors, eliminating repetitive 

regions, and optimizing computational efficiency [7]. 

Assembly By Short Sequences (ABySS) is a well-known 

software program that handles de novo assembly's complexities. 

By utilising parallel computing capabilities, ABySS can handle 

massive transcriptomic datasets more quickly and accurately, 

which helps to improve assembly speed and accuracy [8]. This 

allows the assembly algorithm to be computed in parallel over a 

collection of computers. Developed in C++, ABySS emphasizes 

its dedication to high-performance parallel computing in 

transcriptomics research by utilizing the Message Passing 

Interface (MPI) standard for smooth node communication [9].  

The velvet assembler is a popular bioinformatics software 

program that reassembles the genome from short DNA 

fragments generated by sequencing technology [10]. These 

DNA fragments are divided into k-mers, which velvet would 

split smaller before joining them into long DNA fragments. 

Velvet assembler is an important tool for expanding our 

understanding of the development of various organisms because 

of their adaptability and dependability. By implementing a 

pipeline for parallel processing de novo assembly, incorporating 

both ABySS and velvet assemblers, we can accelerate the 

assembly procedure and result in quicker and more precise 

transcript reconstruction. 

Parallel computing is a game-changer in the field of 

genomics [11]. It boosts the computational capacity to handle 

large transcriptomic datasets by executing multiple tasks 

simultaneously across multiple computing resources. Moreover, 

parallel computing enables concurrent analysis of multiple data 

subsets to optimize de novo assembly for MD2 pineapple 

transcriptome data, expediting and enhancing the assembly 

process as shown in [12]. This study leverages two powerful 

tools, ABySS and Velvet, alongside HPC to enhance the 

efficiency and precision of transcriptome assembly for the MD2 

pineapple dataset. This study aims to provide insights into 

improving computational efficiency in genomics by optimising 

configurations of cores and threads. 

 

II. LITERATURE REVIEW 

 

Numerous studies have been conducted to improve the speed 

and efficiency of transcriptome analysis, which is an important 

aspect of genomic research. Researchers have focused on 

improving computational methods to speed up transcriptome 

analysis procedures as the need for a deeper understanding of 

gene expression patterns increases. With advancements in high-

throughput sequencing technologies and computational 

algorithms, there has been a concerted effort to develop 

strategies for accelerating de novo assembly, a critical step in 

unravelling the complexities of gene expression patterns [13]. 

Nevertheless, despite notable progress in this field, challenges 

persist, ranging from managing large-scale datasets to 

optimizing computational efficiency. Hence, this section 

explores existing literature surrounding efforts to enhance the 

speed and efficiency of transcriptomic analysis, shedding light 

on innovative methodologies and their potential implications for 

advancing genomic research.  

A study conducted by [14] suggested that a parallelisation 

solution for the diBELLA 2D pipeline could improve the 

performance of de novo genome assembly through distributed 

memory techniques and linear algebra operations. 

Computationally intensive tasks like matrix multiplication and 

transitive reduction are parallelized across processors, leading to 

near-linear scaling and high parallel efficiency. Therefore, this 

parallelisation strategy promises efficient de novo assembly of 

large genomes using long reads in distributed memory 

environments [15]. The Summary of the different parallelisation 

solutions for advancing genomic research is shown in Table I. 

Moreover, the studies conducted by [21] showcase the 

effectiveness of tools like Trinity, SPAdes, and Trans-ABySS in 

generating high-quality transcriptome assemblies, providing 

valuable insights for researchers working on non-model 

organisms. They demonstrate the species-specific differences in 

assembly tool performance, emphasizing the need for tailored 

approaches based on the organism being studied. Furthermore, 

comparing different assembly strategies, including de novo and 

genome-guided assembly, [22] has shown that de novo assembly 

can be as effective as genome-guided assembly, especially when 

fragmented reference genomes.  

In addition, the temporal progress of gene expression 

analysis using RNA-Seq data has significantly advanced with 

the development of computational methods. Various research 

papers highlight the evolution of computational tools for 

differential gene expression (DEG) analysis, emphasizing the 

need for rigorous and efficient methods to explore time-

dependent changes in gene expression [24]. RNA-Seq 

technology has revolutionized transcriptomics research by 

providing high resolution and a broad dynamic range, leading to 

the development of numerous computational tools for data 

analysis, from read preprocessing to DE analysis [25]. 

Furthermore, integrating new bioinformatics tools for time 

series experiments in RNA-Seq analysis is discussed, 

highlighting the continuous improvements and future 

applications in differential expression analysis [26]. In addition 

to the prior research, the recent publication by [27-29] enhanced 

the clustering-based differential expression analysis method for 

RNA-seq data, providing additional insights and improvements 

to the bioinformatic tools used in this study area. 

 

III. METHODOLOGY 

 

The dataset used in this study was derived from the Illumina 

platform Next Generation Sequencing (NGS), starting off with 

RNA extraction and purification from fresh pineapple leaves to 

the following protocols for creating cDNA libraries. The cDNA 

libraries were finally sequenced on the Illumina GAIIx platform 

resulting to six independent RAW files of containing 

transcriptome data for MD2 pineapple [30]. The methodology 

chosen for processing the MD2 pineapple transcriptome using 

parallel computing platforms is the Software Development Life 

Cycle (SDLC) based on the Agile approach, as shown in Fig. 1. 
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Fig. 1. Agile Methodology 

 

 
  

TABLE I.  SUMMARY OF THE DIFFERENT PARALLELISATION SOLUTIONS FOR ADVANCING GENOMIC RESEARCH.

Parallelisation 

Technique 

Performance Improvements Key Features Tools/Software Reference 

Explicit Multi-
Threaded (XMT) 

assembler. 

Speedups between 25x to 61x 
compared to serial assemblers, 

though limited by memory. 

Parallel processing for 
large datasets. 

XMT Assembler [19] 

Cluster computing for 
RNA-Seq analysis. 

Improved performance on 
multiple RNA-Seq datasets 

without requiring 

bioinformatics expertise. 

User-friendly, automated 
parallel processing. 

 

TRUFA [20] 

Parallel string graph 

construction and 

transitive reduction. 

Near-linear scaling, high 

parallel efficiency for large 

genome assembly. 

Distributed memory 

techniques, MPI for inter-

processor communication. 

diBELLA 2D [14] 

Distributed-memory 
technique. 

Up to 15x speedup over 
Hifiasm and 58x over HiCanu 

for large genome assemblies. 

Redistributes sequences, 
multiway number 

partitioning. 

ELBA  [16] 

Multicore processing. Significant reductions in RNA-
Seq processing time with up to 

four cores. 

Multiple core processing, 
optimized cache speed. 

FastQC, Flexbar, 
Hisat2, Samtools 

[17] 

Advanced 

compression for 
nanopore signal data. 

Reduced runtime from two 

weeks to 10.5 hours for 
nanopore sequencing. 

Optimized data storage 

and analysis. 

SLOW5 [18] 

Bayesian approach for 

transcriptome 
assembly. 

Improved accuracy in gene 

expression analysis, especially 
for lowly expressed genes. 

Handles alternative 

splicing, transcript 
expression probabilities. 

BayesDenovo [23] 

 
 

 

 

Agile methodology is preferred for its adaptability to 

complex and evolving tasks like transcriptomic studies. By 

breaking the project into smaller iterations, Agile promotes 

incremental development and continuous improvement 

throughout the analysis process. This iterative approach aligns 

well with the project's multifaceted stages, including planning, 

data retrieval, assembly, calculation, graph plotting, and 

comparison. The Agile model's flexibility accommodates 

changing requirements and emerging insights, which is crucial 

for optimizing de novo assembly and seamlessly integrating 

parallel processing techniques.  

Establishing the study environment using Conda was a 

crucial step during the planning phase. This setup was 

instrumental in efficiently managing software dependencies. 

The process involved downloading the Miniconda installer and 

initiating the setup via the terminal with a bash command. 

ABySS, a key component for de novo assembly, was 

downloaded through Conda, ensuring smooth package 

management, and resolving dependencies. Using FileZilla for 

secure data transmission between Windows and Ubuntu 

platforms and installing Velvet Assembler on the Quanta server 

further enhanced the project's efficiency. 

 

A. The Requirement Analysis Phase 

 

The requirement analysis phase of Agile is centered around 

obtaining essential data in our study, the transcriptome data of 

the MD2 pineapple variety, provided by the Department of 

Agriculture Technology, Faculty of Agriculture, Universiti 

Putra Malaysia, played a pivotal role. This FASTQ-formatted 

dataset was the backbone of our study, serving as crucial 

material for the subsequent stages. The efficient transfer of this 

data from a personal Windows machine to the Quanta server 

using FileZilla ensured prompt and secure access to the required 

data for further processing. This phase laid a crucial foundation 

by ensuring the timely and safe availability of necessary data on 

the selected server. 
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B. The The Development Phase 

 

The development phase of Agile is dedicated to the de novo 

assembly process, which is the core task of our project. This 

process involves the reconstruction of the MD2 pineapple 

transcriptome using both parallel computing and traditional 

sequential processing methods. The conversion of short DNA 

reads into longer sequences, known as contigs, is a key part of 

this process. Parallel computing techniques, such as dividing 

sequencing reads into smaller subsets for processing, are 

employed. The project evaluates performance across different 

configurations, including varying numbers of cores and threads, 

alongside sequential processing. The time taken for assembly is 

recorded for both approaches to provide insights into their speed 

and performance. This approach allows for the identification of 

potential areas for enhancement or optimization. 

 

C. The Testing Phase 

 

In the testing phase, the study aims to evaluate and compare 

the de novo assembly process outcomes, focusing on two key 

metrics: average execution time and speedup. Average 

execution time measures the time taken for the assembly process 

to complete across various setups, providing insights into 

computational efficiency. Speedup, calculated as the ratio 

between computation time using a single CPU core and that 

using multiple cores illustrates the improvement in 

computational speed achieved through parallel processing. 

These metrics enable a detailed analysis of performance 

enhancements resulting from parallelism. Findings from these 

evaluations inform decisions on optimising future transcriptome 

analysis, offering crucial insights into the efficiency and 

effectiveness of parallel computing platforms. 

The implementations for the ABySS and Velvet assemblers 

involve specific commands to optimize their respective De 

Novo assembly processes. For ABySS, users make repeated 

changes to the number of cores and threads for each run, testing 

various combinations to enhance the assembly method. The 'np' 

function allows customization of the computing workload by 

specifying the number of processors or cores, maximizing 

resource usage based on available hardware, while the 'j' 

command specifies the number of threads to improve 

parallelization and assembly efficiency. In contrast, the Velvet 

Assembler uses two successive commands: velveth and velvetg. 

The velveth command produces the hash table for the input data 

using the format time velveth <file-name> <k-mer length> -

shortPaired -fastq -separate <data-file-1> <data-file-2>, and the 

velvetg command constructs the de novo assembly with time 

velvetg <file-name>. This integrated approach ensures both 

ABySS and Velvet assemblers are effectively customized and 

utilized according to individual computational resources and 

requirements. 

 

D. The Review and Adapt Phase 

 

The study conducts a detailed outcomes analysis in the 

review and adaptation phase by creating graphs for specific core 

configurations. These graphs illustrate the relationship between 

the number of threads and execution time, providing information 

about the assembly process's performance across different 

configurations. Another set of plots examines the relationship 

between threads and speed increase for each core configuration, 

showcasing system scalability and resource optimization. The 

project remains adaptable to data format or size changes, with 

the Agile approach facilitating a seamless return to the planning 

stage if needed. This adaptability ensures that the project can 

accommodate frequent modifications in data features, which is 

vital in the dynamic field of bioinformatics research. Agile 

methodology serves as a solid foundation for responding to 

evolving needs by allowing adjustments in tool selection and 

data characteristics. 

 

E. Performance Analysis 

 

To conduct an analysis on a tool's performance, the metrics 

of speedup and efficiency are chosen. The formulas used to 

calculate the speedup and efficiency of the tool are as follows: 

 

Speedup is calculated as follows: 
 

Speedup =
Sequential Execution Time

Parallel Execution Time
  

        

Efficiency is calculated as follows:    
       

Efficiency =
Speedup 

Number of Threads
 ×  100 

 

These formulas provide quantitative measures to evaluate the 

performance improvement and resource utilization of the tool 

when running in parallel compared to sequential execution. A 

higher speedup value indicates a greater performance gain, 

while an efficiency value closer to 1 (or 100%) suggests optimal 

utilization of the available processors. 

 

IV. RESULTS AND DISCUSSION 

 

This section provides a comprehensive analysis of the results 

obtained from de novo assembly procedures, focusing on both 

the ABySS and Velvet assemblers. In the ABySS segment, we 

tested various combinations of cores and threads, ranging from 

2 to 8 cores and 2 to 16 threads, to gauge their impact on overall 

performance. In the Velvet section, our aim was to enhance de 

novo assembly by implementing parallel processing, using a 

fixed number of 8 cores with different thread counts.  

Our initial focus is on the ABySS software, where we 

meticulously examine the results of each combination over three 

rounds. The slight variations observed in these rounds could be 

attributed to system and environmental changes during the 

process. This underscores the importance of our multi-round 

approach, which enhances the reliability and comprehensiveness 

of our analysis. 

Table II summarises the outcomes from three rounds of de 

novo assembly processes, each utilising 2 cores with varying 

thread counts, which are 2, 4, 8, 12, and 16 threads. Notably, the 

2-core and 12-thread configuration stands out for its exceptional 

performance, boasting an average execution time of 56.67 

minutes and the highest speedup recorded at 3.74. This 

configuration serves as a clear benchmark for the most efficient 

performance.  
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TABLE II.  FINDINGS WITH A CONSTANT OF 2 CORES 

 

Number 

of Cores 

Number 

of 

Threads 

Execution Time (minutes) Speedup 

1st 

Round 

2nd 

Round 

3rd 

Round 

Average 

1 1 212 212 212 212 1 

2 2 118 118 117 117.67 1.80 

2 4 73 74 73 73.33 2.89 

2 8 58 59 57 58 3.66 

2 12 60 55 55 56.67 3.74 

2 16 86 108 77 90.33 2.35 

 
TABLE III.  FINDINGS WITH A CONSTANT OF 4 CORES 

 
Number 

of Cores 

Number 

of 

Threads 

Execution Time (minutes) Speedup 

1st 

Round 

2nd 

Round 

3rd 

Round 

Average 

1 1 212 212 212 212 1 

4 2 108 108 108 108 1.96 

4 4 64 67 64 65 3.26 

4 8 48 47 48 47.67 4.45 

4 12 48 49 46 47.67 4.45 

4 16 67 69 68 68 3.12 

 

 

Table III shows the outcomes of three rounds of de novo 

assembly procedures using 4 cores with different thread counts 

(2, 4, 8, 12, and 16 threads). The results indicate that the best 

performance is achieved when employing 4 cores with 8 and 12 

threads, resulting in an average execution time of 47.67 minutes 

and a speedup of 4.45. Meanwhile, Table IV summarises 

outcomes from three rounds of de novo assembly procedures, 

which use 8 cores with varying thread counts (2, 4, 8, 12, and 16 

threads). It highlights the optimal performance with 8 and 12 

threads, as evidenced by the shortest average execution time of 

42 minutes and the maximum speedup of 5.05. 

 
TABLE IV.  FINDINGS WITH A CONSTANT OF 8 CORES 

 
Number 

of Cores 

Number 

of 

Threads 

Execution Time (minutes) Speedup 

1st 

Round 

2nd 

Round 

3rd 

Round 

Average 

1 1 212 212 212 212 1 

8 2 108 101 101 103.33 2.05 

8 4 62 58 58 59.33 3.57 

8 8 42 42 42 42 5.05 

8 12 48 39 39 42 5.05 

8 16 66 62 62 63.33 3.35 

 

 
 
Fig. 2. Number of threads against Execution time with 2, 4 and 8 cores 

Fig. 2 illustrates how various combinations of core and 

thread counts impact the runtime of the de novo assembly 

process. The graph shows a continuous reduction in execution 

time as the number of cores rises from 2 to 8. A parallel pattern 

is observed when analysing the correlation between thread count 

and execution time. For 2 cores, the execution time decreases 

from 2 to 8 threads, then increases at thread counts of 12 and 16. 

For 4 cores and 8 cores, the execution time lowers as the number 

of threads increases to 8, stabilises at 12 threads (showing 

similar performance to 8 threads), and then increases again at 16 

threads. Once the thread count reaches 16 for all 2, 4, and 8 

cores, the execution time starts to increase. This behaviour may 

indicate a decline in performance due to possible extra costs 

associated with managing an excessive number of threads. 

Next, Fig. 3 displays a detailed analysis of how different 

combinations of cores and threads affect the speedup in de novo 

assembly processes. The correlation between core count and 

speedup demonstrates an apparent enhancement with increased 

cores, highlighting the system's effective parallelisation and 

efficient use of computing resources. An analysis of the 

relationship between thread counts and speedup shows a gradual 

improvement in speedup as the number of threads increases, 

reaching a specific limit (e.g., 12 or 16 threads). Once the limit 

is surpassed, a decrease in performance is observed, indicating 

reduced advantages from excessive parallelisation. 

 

 
Fig. 3. Number of threads against Speedup with 2, 4 and 8 cores 

 

 

An improved relationship is shown initially, demonstrating 

better parallelism as the number of threads increases, 

highlighting the system's ability to optimise resources for 

improved performance. However, over a particular limit, adding 

additional threads can result in a decrease in performance. The 

main factors driving this issue are contention for shared 

resources, leading to bottlenecks as several threads compete for 

a limited number of resources, and a rise in overhead, where 

handling a higher thread count surpasses the advantages of 

parallelism. The significant increase in execution time when 

using 12 or 16 threads indicates that the system has reached a 

point where the disadvantages of managing more threads 

outweigh the benefits of parallelisation. 
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Next, we shall examine the outcomes of the velvet software. 

Velvet requires two separate commands, velveth and velvetg, 

for conducting transcriptomic analysis, which sets it apart from 

ABySS. We will analyse the results of each command 

individually by changing the number of threads used while 

keeping a consistent 8-core configuration. Table V displays the 

performance comparison of the velveth command using 

different amounts of threads while maintaining a constant of 8 

cores. The analysis shows that using 8 cores with 16 threads 

results in the best performance, with an execution time of 5.03 

minutes and a speedup of 3.53. 

 
TABLE V.  RESULT FOR TIME, SPEEDUP, EFFICIENCY FOR VELVETH 

COMMAND USING 8 CORE QUANTA SERVER 

 

Number of 

Threads 

1 2 4 8 16 

Time 

(minutes) 

17.77 10.78 6.82 5.53 5.03 

Speedup - 1.65 2.61 3.21 3.53 

Efficiency 

(%) 

- 82.5 65.25 40.13 22.06 

 

 

Fig. 4. Bar chart for comparison of Number of Threads against The Execution 
Time for velveth command using 8 Core Quanta Server 

 

 
Figure 5. Bar chart for comparison of Number of Threads against The Speedup 

for velveth command using 8 Core Quanta Server 

 
 

Two graphs have been generated to visually show the 

velveth command's performance using different numbers of 

threads with a fixed 8-core configuration. Fig. 4 displays a bar 

chart that compares the number of threads with execution time, 

allowing a clear visual comparison. Fig. 5 illustrates the 

correlation between the number of threads and speedup, 

providing valuable information on the efficiency improvements 

obtained via parallel processing. The graphs show that as the 

number of threads increases, the execution time decreases, while 

the speedup of the performance shows a corresponding increase 

for the velveth command in the de novo assembly process. 

Following this, Table VI displays the outcomes of executing 

the velvetg command using different thread counts on a 

consistent 8-core system. The configuration of 8 cores and 8 

threads demonstrates excellent performance, with an execution 

time of 23.27 minutes and a speedup of 4.37.  

 
TABLE VI.  RESULT FOR TIME, SPEEDUP, EFFICIENCY FOR VELVETG 

COMMAND USING 8 CORE QUANTA SERVER 

 
Number of 

Threads 

1 2 4 8 16 

Time 

(minutes) 
101.68 57.41 34.67 23.27 25.26 

Speedup - 1.77 2.93 4.37 4.03 

Efficiency 

(%) 

- 88.5 73.25 54.63 25.19 

 

 

The results are also displayed graphically to offer a more 

detailed viewpoint. Fig. 6 shows a bar chart comparing thread 

count with execution time for the velvetg command using 8 

cores. Meanwhile, Fig. 7 displays a bar chart comparing thread 

count with speedup for the same setup on a Core Quanta Server. 

 

 
Fig. 6. Bar chart for comparison of Number of Threads against The Execution 

Time for velvetg command using 8 Core Quanta 
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Fig. 7. Bar chart for comparison of Number of Threads against The Speedup for 

velvetg command using 8 Core Quanta 

 

 

Analysed from the graphs of the velvetg command, it is 

evident that an increase in the thread count leads to a reduction 

in the time taken for execution. However, velvetg's execution 

time is longer with 16 threads than 8 threads, and the speedup is 

smaller with 16 threads than 8 threads. There may be an 

imbalance between the advantages of parallelism and the 

additional overhead of using 16 threads. Thread overhead and 

resource contention are probable causes of inefficiencies and 

bottlenecks in the assembly process when using a higher number 

of threads. 

Moreover, Fig. 8 provides a bar chart illustrating the 

efficiency of both velveth and velvetg commands across the 

usage of different numbers of threads. When utilising multiple 

threads, we often observed that velvetg performs more 

efficiently than velveth in our de novo assembly project. Velvetg 

consistently outperformed velveth in optimising the assembly 

across various thread counts. In our study on using Velvet, 

parallelisation benefits are more evident during the assembly 

optimisation phase with velvetg than during the initial hash 

building with velveth. 

 

 
Fig. 8. Bar chart for comparison between velveth and velvetg command 
efficiency across the usage of different number of threads 

 

 
 

V. CONCLUSIONS  

 

In conclusion, our investigation into de novo assembly 

processes using ABySS and Velvet assemblers has yielded 

significant findings. ABySS demonstrated its superiority with an 

8-core and 8-thread setup while proving its adaptability with an 

8-core and 12-thread configuration. Conversely, Velvet 

showcased exceptional performance with 8 cores and 16 threads 

for the velveth command and 8 cores and 8 threads for the 

velvetg command. These results underscore the importance of 

careful configuration selection for optimal performance in de 

novo assembly procedures. 

Our study not only deepens our understanding of the 

relationships among core count, thread count, execution time, 

and speedup for ABySS and Velvet assemblers but also provides 

practical guidance for researchers and practitioners. The 

diminishing returns observed with higher thread counts 

underscore the need for a balanced approach to parallelisation. 

By carefully selecting configurations, researchers can optimise 

the performance of de novo assembly procedures. These 

findings are particularly valuable for those working in 

parallelised computing environments and aiming to enhance the 

efficiency of transcriptome analysis using ABySS and velvet 

assemblers. 

It is important to acknowledge the limitations of our study. 

One notable constraint is the absence of GPU utilization in the 

ABySS and Velvet Assembler program, which could have 

significantly improved processing efficiency. Relying solely on 

CPU resources may have restricted the speed and scalability of 

the de novo assembly operations. These limitations underscore 

the need for future research to focus on integrating modern 

hardware resources, particularly GPUs, to maximize efficiency 

in transcriptomic analysis. The observed restrictions also 

highlight the ongoing need for assemblers to adapt and integrate 

with advanced hardware resources to optimize the efficiency of 

transcriptomic analysis. 
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