
International Journal of Innovative Computing 14(2) 81-88

81

Enhancing Transcriptomic Analysis by Influencing

De Novo Assembly Using Parallel Computing

Nur Hafizah Zaideen1, Muhammad Azman Habeeb Mohamed1, Nor Asilah Wati Abdul Hamid1,2*, Norazrin Ariffin3,

Mohamed Faris Laham2 & Zurita Ismail2

1Faculty of Computer Science and Information Technology
2Institute for Mathematical Research

3Faculty of Agriculture

Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia

Email: asila@upm.edu.my

Submitted: 22/8/2024. Revised edition: 9/10/2024. Accepted: 14/10/2024. Published online: 25/11/2024

DOI: https://doi.org/10.11113/ijic.v14n2.483

Abstract—The efficient and accurate assembly of genomic data is

a computationally intensive process that demands significant

computational resources. Traditional sequential approaches often

struggle to handle genomic data sets increasing volume and

complexity, leading to prolonged execution times and suboptimal

results. The study aims to leverage parallel computing capabilities

by employing the ABySS and Velvet Assembler tools on the MD2

Pineapple dataset hosted on the Quanta server. By systematically

evaluating the performance of these tools across varying thread

counts, the study seeks to identify optimal configurations that can

enhance the efficiency and accuracy of the de novo assembly

process, ultimately enabling more rapid and precise genomic

analysis. The study found that for the ABySS assembler, an 8-core

and 8-thread configuration exhibited the shortest execution time

and greatest speedup, while an 8-core and 12-thread setup

produced similar outcomes, demonstrating ABySS's flexibility to

adjust to various thread configurations. Velvet assembler

demonstrated exceptional performance by utilizing 8 cores and 16

threads for the velvetg command, and 8 cores and 8 threads for

the velveth command. Significantly, this study provided

implications for advancing genomic analysis methodologies by

providing valuable guidance on optimizing the efficiency and

accuracy of de novo assembly processes through careful selection

of parallelization configurations, paving the way for future studies

and applications in genetic data analysis.

Keywords—Parallel Computing, Quanta Server, Abyss, Velvet,

Transcriptome Analysis

I. INTRODUCTION

In recent years, the field of virology has advanced rapidly,

primarily due to increased access to genomic data. Public

repositories, such as the National Center for Biotechnology

Information (NCBI), now house vast libraries of sequenced

genomes, which enables researchers to find new viral genes

essential for fighting emerging diseases. Transcriptome

assembly plays an important role in understanding the functional

components of genetic material in the field of genomics [1].

Efficient computational tools are needed due to the explosion of

biological data generated by high-throughput sequencing. De

novo assembly, the process of constructing transcriptomes or

genomes from short DNA sequences, remains a fundamental yet

challenging task due to the complexity of gene expression data

[2].

High Performance Computing (HPC) provides the

computational power necessary to handle these large datasets.

HPC systems can accelerate de novo assembly by utilising

parallel processing, making it possible to efficiently process the

increasing volume of genomic data [3-4]. Transcriptomic

analysis, a fundamental aspect of genomics, aims to decode an

organism's gene expression patterns and understand the

dynamics of its transcriptome [5]. De novo assembly involves

stitching contiguous sequences (contigs) from short DNA

fragments obtained through next-generation sequencing [6].

Nevertheless, de novo assembly presents significant challenges,

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

82

including managing sequencing errors, eliminating repetitive

regions, and optimizing computational efficiency [7].

Assembly By Short Sequences (ABySS) is a well-known

software program that handles de novo assembly's complexities.

By utilising parallel computing capabilities, ABySS can handle

massive transcriptomic datasets more quickly and accurately,

which helps to improve assembly speed and accuracy [8]. This

allows the assembly algorithm to be computed in parallel over a

collection of computers. Developed in C++, ABySS emphasizes

its dedication to high-performance parallel computing in

transcriptomics research by utilizing the Message Passing

Interface (MPI) standard for smooth node communication [9].

The velvet assembler is a popular bioinformatics software

program that reassembles the genome from short DNA

fragments generated by sequencing technology [10]. These

DNA fragments are divided into k-mers, which velvet would

split smaller before joining them into long DNA fragments.

Velvet assembler is an important tool for expanding our

understanding of the development of various organisms because

of their adaptability and dependability. By implementing a

pipeline for parallel processing de novo assembly, incorporating

both ABySS and velvet assemblers, we can accelerate the

assembly procedure and result in quicker and more precise

transcript reconstruction.

Parallel computing is a game-changer in the field of

genomics [11]. It boosts the computational capacity to handle

large transcriptomic datasets by executing multiple tasks

simultaneously across multiple computing resources. Moreover,

parallel computing enables concurrent analysis of multiple data

subsets to optimize de novo assembly for MD2 pineapple

transcriptome data, expediting and enhancing the assembly

process as shown in [12]. This study leverages two powerful

tools, ABySS and Velvet, alongside HPC to enhance the

efficiency and precision of transcriptome assembly for the MD2

pineapple dataset. This study aims to provide insights into

improving computational efficiency in genomics by optimising

configurations of cores and threads.

II. LITERATURE REVIEW

Numerous studies have been conducted to improve the speed

and efficiency of transcriptome analysis, which is an important

aspect of genomic research. Researchers have focused on

improving computational methods to speed up transcriptome

analysis procedures as the need for a deeper understanding of

gene expression patterns increases. With advancements in high-

throughput sequencing technologies and computational

algorithms, there has been a concerted effort to develop

strategies for accelerating de novo assembly, a critical step in

unravelling the complexities of gene expression patterns [13].

Nevertheless, despite notable progress in this field, challenges

persist, ranging from managing large-scale datasets to

optimizing computational efficiency. Hence, this section

explores existing literature surrounding efforts to enhance the

speed and efficiency of transcriptomic analysis, shedding light

on innovative methodologies and their potential implications for

advancing genomic research.

A study conducted by [14] suggested that a parallelisation

solution for the diBELLA 2D pipeline could improve the

performance of de novo genome assembly through distributed

memory techniques and linear algebra operations.

Computationally intensive tasks like matrix multiplication and

transitive reduction are parallelized across processors, leading to

near-linear scaling and high parallel efficiency. Therefore, this

parallelisation strategy promises efficient de novo assembly of

large genomes using long reads in distributed memory

environments [15]. The Summary of the different parallelisation

solutions for advancing genomic research is shown in Table I.

Moreover, the studies conducted by [21] showcase the

effectiveness of tools like Trinity, SPAdes, and Trans-ABySS in

generating high-quality transcriptome assemblies, providing

valuable insights for researchers working on non-model

organisms. They demonstrate the species-specific differences in

assembly tool performance, emphasizing the need for tailored

approaches based on the organism being studied. Furthermore,

comparing different assembly strategies, including de novo and

genome-guided assembly, [22] has shown that de novo assembly

can be as effective as genome-guided assembly, especially when

fragmented reference genomes.

In addition, the temporal progress of gene expression

analysis using RNA-Seq data has significantly advanced with

the development of computational methods. Various research

papers highlight the evolution of computational tools for

differential gene expression (DEG) analysis, emphasizing the

need for rigorous and efficient methods to explore time-

dependent changes in gene expression [24]. RNA-Seq

technology has revolutionized transcriptomics research by

providing high resolution and a broad dynamic range, leading to

the development of numerous computational tools for data

analysis, from read preprocessing to DE analysis [25].

Furthermore, integrating new bioinformatics tools for time

series experiments in RNA-Seq analysis is discussed,

highlighting the continuous improvements and future

applications in differential expression analysis [26]. In addition

to the prior research, the recent publication by [27-29] enhanced

the clustering-based differential expression analysis method for

RNA-seq data, providing additional insights and improvements

to the bioinformatic tools used in this study area.

III. METHODOLOGY

The dataset used in this study was derived from the Illumina

platform Next Generation Sequencing (NGS), starting off with

RNA extraction and purification from fresh pineapple leaves to

the following protocols for creating cDNA libraries. The cDNA

libraries were finally sequenced on the Illumina GAIIx platform

resulting to six independent RAW files of containing

transcriptome data for MD2 pineapple [30]. The methodology

chosen for processing the MD2 pineapple transcriptome using

parallel computing platforms is the Software Development Life

Cycle (SDLC) based on the Agile approach, as shown in Fig. 1.

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

83

Fig. 1. Agile Methodology

TABLE I. SUMMARY OF THE DIFFERENT PARALLELISATION SOLUTIONS FOR ADVANCING GENOMIC RESEARCH.

Parallelisation

Technique

Performance Improvements Key Features Tools/Software Reference

Explicit Multi-
Threaded (XMT)

assembler.

Speedups between 25x to 61x
compared to serial assemblers,

though limited by memory.

Parallel processing for
large datasets.

XMT Assembler [19]

Cluster computing for
RNA-Seq analysis.

Improved performance on
multiple RNA-Seq datasets

without requiring

bioinformatics expertise.

User-friendly, automated
parallel processing.

TRUFA [20]

Parallel string graph

construction and

transitive reduction.

Near-linear scaling, high

parallel efficiency for large

genome assembly.

Distributed memory

techniques, MPI for inter-

processor communication.

diBELLA 2D [14]

Distributed-memory
technique.

Up to 15x speedup over
Hifiasm and 58x over HiCanu

for large genome assemblies.

Redistributes sequences,
multiway number

partitioning.

ELBA [16]

Multicore processing. Significant reductions in RNA-
Seq processing time with up to

four cores.

Multiple core processing,
optimized cache speed.

FastQC, Flexbar,
Hisat2, Samtools

[17]

Advanced

compression for
nanopore signal data.

Reduced runtime from two

weeks to 10.5 hours for
nanopore sequencing.

Optimized data storage

and analysis.

SLOW5 [18]

Bayesian approach for

transcriptome
assembly.

Improved accuracy in gene

expression analysis, especially
for lowly expressed genes.

Handles alternative

splicing, transcript
expression probabilities.

BayesDenovo [23]

Agile methodology is preferred for its adaptability to

complex and evolving tasks like transcriptomic studies. By

breaking the project into smaller iterations, Agile promotes

incremental development and continuous improvement

throughout the analysis process. This iterative approach aligns

well with the project's multifaceted stages, including planning,

data retrieval, assembly, calculation, graph plotting, and

comparison. The Agile model's flexibility accommodates

changing requirements and emerging insights, which is crucial

for optimizing de novo assembly and seamlessly integrating

parallel processing techniques.

Establishing the study environment using Conda was a

crucial step during the planning phase. This setup was

instrumental in efficiently managing software dependencies.

The process involved downloading the Miniconda installer and

initiating the setup via the terminal with a bash command.

ABySS, a key component for de novo assembly, was

downloaded through Conda, ensuring smooth package

management, and resolving dependencies. Using FileZilla for

secure data transmission between Windows and Ubuntu

platforms and installing Velvet Assembler on the Quanta server

further enhanced the project's efficiency.

A. The Requirement Analysis Phase

The requirement analysis phase of Agile is centered around

obtaining essential data in our study, the transcriptome data of

the MD2 pineapple variety, provided by the Department of

Agriculture Technology, Faculty of Agriculture, Universiti

Putra Malaysia, played a pivotal role. This FASTQ-formatted

dataset was the backbone of our study, serving as crucial

material for the subsequent stages. The efficient transfer of this

data from a personal Windows machine to the Quanta server

using FileZilla ensured prompt and secure access to the required

data for further processing. This phase laid a crucial foundation

by ensuring the timely and safe availability of necessary data on

the selected server.

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

84

B. The The Development Phase

The development phase of Agile is dedicated to the de novo

assembly process, which is the core task of our project. This

process involves the reconstruction of the MD2 pineapple

transcriptome using both parallel computing and traditional

sequential processing methods. The conversion of short DNA

reads into longer sequences, known as contigs, is a key part of

this process. Parallel computing techniques, such as dividing

sequencing reads into smaller subsets for processing, are

employed. The project evaluates performance across different

configurations, including varying numbers of cores and threads,

alongside sequential processing. The time taken for assembly is

recorded for both approaches to provide insights into their speed

and performance. This approach allows for the identification of

potential areas for enhancement or optimization.

C. The Testing Phase

In the testing phase, the study aims to evaluate and compare

the de novo assembly process outcomes, focusing on two key

metrics: average execution time and speedup. Average

execution time measures the time taken for the assembly process

to complete across various setups, providing insights into

computational efficiency. Speedup, calculated as the ratio

between computation time using a single CPU core and that

using multiple cores illustrates the improvement in

computational speed achieved through parallel processing.

These metrics enable a detailed analysis of performance

enhancements resulting from parallelism. Findings from these

evaluations inform decisions on optimising future transcriptome

analysis, offering crucial insights into the efficiency and

effectiveness of parallel computing platforms.

The implementations for the ABySS and Velvet assemblers

involve specific commands to optimize their respective De

Novo assembly processes. For ABySS, users make repeated

changes to the number of cores and threads for each run, testing

various combinations to enhance the assembly method. The 'np'

function allows customization of the computing workload by

specifying the number of processors or cores, maximizing

resource usage based on available hardware, while the 'j'

command specifies the number of threads to improve

parallelization and assembly efficiency. In contrast, the Velvet

Assembler uses two successive commands: velveth and velvetg.

The velveth command produces the hash table for the input data

using the format time velveth <file-name> <k-mer length> -

shortPaired -fastq -separate <data-file-1> <data-file-2>, and the

velvetg command constructs the de novo assembly with time

velvetg <file-name>. This integrated approach ensures both

ABySS and Velvet assemblers are effectively customized and

utilized according to individual computational resources and

requirements.

D. The Review and Adapt Phase

The study conducts a detailed outcomes analysis in the

review and adaptation phase by creating graphs for specific core

configurations. These graphs illustrate the relationship between

the number of threads and execution time, providing information

about the assembly process's performance across different

configurations. Another set of plots examines the relationship

between threads and speed increase for each core configuration,

showcasing system scalability and resource optimization. The

project remains adaptable to data format or size changes, with

the Agile approach facilitating a seamless return to the planning

stage if needed. This adaptability ensures that the project can

accommodate frequent modifications in data features, which is

vital in the dynamic field of bioinformatics research. Agile

methodology serves as a solid foundation for responding to

evolving needs by allowing adjustments in tool selection and

data characteristics.

E. Performance Analysis

To conduct an analysis on a tool's performance, the metrics

of speedup and efficiency are chosen. The formulas used to

calculate the speedup and efficiency of the tool are as follows:

Speedup is calculated as follows:

Speedup =
Sequential Execution Time

Parallel Execution Time

Efficiency is calculated as follows:

Efficiency =
Speedup

Number of Threads
 × 100

These formulas provide quantitative measures to evaluate the

performance improvement and resource utilization of the tool

when running in parallel compared to sequential execution. A

higher speedup value indicates a greater performance gain,

while an efficiency value closer to 1 (or 100%) suggests optimal

utilization of the available processors.

IV. RESULTS AND DISCUSSION

This section provides a comprehensive analysis of the results

obtained from de novo assembly procedures, focusing on both

the ABySS and Velvet assemblers. In the ABySS segment, we

tested various combinations of cores and threads, ranging from

2 to 8 cores and 2 to 16 threads, to gauge their impact on overall

performance. In the Velvet section, our aim was to enhance de

novo assembly by implementing parallel processing, using a

fixed number of 8 cores with different thread counts.

Our initial focus is on the ABySS software, where we

meticulously examine the results of each combination over three

rounds. The slight variations observed in these rounds could be

attributed to system and environmental changes during the

process. This underscores the importance of our multi-round

approach, which enhances the reliability and comprehensiveness

of our analysis.

Table II summarises the outcomes from three rounds of de

novo assembly processes, each utilising 2 cores with varying

thread counts, which are 2, 4, 8, 12, and 16 threads. Notably, the

2-core and 12-thread configuration stands out for its exceptional

performance, boasting an average execution time of 56.67

minutes and the highest speedup recorded at 3.74. This

configuration serves as a clear benchmark for the most efficient

performance.

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

85

TABLE II. FINDINGS WITH A CONSTANT OF 2 CORES

Number

of Cores

Number

of

Threads

Execution Time (minutes) Speedup

1st

Round

2nd

Round

3rd

Round

Average

1 1 212 212 212 212 1

2 2 118 118 117 117.67 1.80

2 4 73 74 73 73.33 2.89

2 8 58 59 57 58 3.66

2 12 60 55 55 56.67 3.74

2 16 86 108 77 90.33 2.35

TABLE III. FINDINGS WITH A CONSTANT OF 4 CORES

Number

of Cores

Number

of

Threads

Execution Time (minutes) Speedup

1st

Round

2nd

Round

3rd

Round

Average

1 1 212 212 212 212 1

4 2 108 108 108 108 1.96

4 4 64 67 64 65 3.26

4 8 48 47 48 47.67 4.45

4 12 48 49 46 47.67 4.45

4 16 67 69 68 68 3.12

Table III shows the outcomes of three rounds of de novo

assembly procedures using 4 cores with different thread counts

(2, 4, 8, 12, and 16 threads). The results indicate that the best

performance is achieved when employing 4 cores with 8 and 12

threads, resulting in an average execution time of 47.67 minutes

and a speedup of 4.45. Meanwhile, Table IV summarises

outcomes from three rounds of de novo assembly procedures,

which use 8 cores with varying thread counts (2, 4, 8, 12, and 16

threads). It highlights the optimal performance with 8 and 12

threads, as evidenced by the shortest average execution time of

42 minutes and the maximum speedup of 5.05.

TABLE IV. FINDINGS WITH A CONSTANT OF 8 CORES

Number

of Cores

Number

of

Threads

Execution Time (minutes) Speedup

1st

Round

2nd

Round

3rd

Round

Average

1 1 212 212 212 212 1

8 2 108 101 101 103.33 2.05

8 4 62 58 58 59.33 3.57

8 8 42 42 42 42 5.05

8 12 48 39 39 42 5.05

8 16 66 62 62 63.33 3.35

Fig. 2. Number of threads against Execution time with 2, 4 and 8 cores

Fig. 2 illustrates how various combinations of core and

thread counts impact the runtime of the de novo assembly

process. The graph shows a continuous reduction in execution

time as the number of cores rises from 2 to 8. A parallel pattern

is observed when analysing the correlation between thread count

and execution time. For 2 cores, the execution time decreases

from 2 to 8 threads, then increases at thread counts of 12 and 16.

For 4 cores and 8 cores, the execution time lowers as the number

of threads increases to 8, stabilises at 12 threads (showing

similar performance to 8 threads), and then increases again at 16

threads. Once the thread count reaches 16 for all 2, 4, and 8

cores, the execution time starts to increase. This behaviour may

indicate a decline in performance due to possible extra costs

associated with managing an excessive number of threads.

Next, Fig. 3 displays a detailed analysis of how different

combinations of cores and threads affect the speedup in de novo

assembly processes. The correlation between core count and

speedup demonstrates an apparent enhancement with increased

cores, highlighting the system's effective parallelisation and

efficient use of computing resources. An analysis of the

relationship between thread counts and speedup shows a gradual

improvement in speedup as the number of threads increases,

reaching a specific limit (e.g., 12 or 16 threads). Once the limit

is surpassed, a decrease in performance is observed, indicating

reduced advantages from excessive parallelisation.

Fig. 3. Number of threads against Speedup with 2, 4 and 8 cores

An improved relationship is shown initially, demonstrating

better parallelism as the number of threads increases,

highlighting the system's ability to optimise resources for

improved performance. However, over a particular limit, adding

additional threads can result in a decrease in performance. The

main factors driving this issue are contention for shared

resources, leading to bottlenecks as several threads compete for

a limited number of resources, and a rise in overhead, where

handling a higher thread count surpasses the advantages of

parallelism. The significant increase in execution time when

using 12 or 16 threads indicates that the system has reached a

point where the disadvantages of managing more threads

outweigh the benefits of parallelisation.

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

86

Next, we shall examine the outcomes of the velvet software.

Velvet requires two separate commands, velveth and velvetg,

for conducting transcriptomic analysis, which sets it apart from

ABySS. We will analyse the results of each command

individually by changing the number of threads used while

keeping a consistent 8-core configuration. Table V displays the

performance comparison of the velveth command using

different amounts of threads while maintaining a constant of 8

cores. The analysis shows that using 8 cores with 16 threads

results in the best performance, with an execution time of 5.03

minutes and a speedup of 3.53.

TABLE V. RESULT FOR TIME, SPEEDUP, EFFICIENCY FOR VELVETH

COMMAND USING 8 CORE QUANTA SERVER

Number of

Threads

1 2 4 8 16

Time

(minutes)

17.77 10.78 6.82 5.53 5.03

Speedup - 1.65 2.61 3.21 3.53

Efficiency

(%)

- 82.5 65.25 40.13 22.06

Fig. 4. Bar chart for comparison of Number of Threads against The Execution
Time for velveth command using 8 Core Quanta Server

Figure 5. Bar chart for comparison of Number of Threads against The Speedup

for velveth command using 8 Core Quanta Server

Two graphs have been generated to visually show the

velveth command's performance using different numbers of

threads with a fixed 8-core configuration. Fig. 4 displays a bar

chart that compares the number of threads with execution time,

allowing a clear visual comparison. Fig. 5 illustrates the

correlation between the number of threads and speedup,

providing valuable information on the efficiency improvements

obtained via parallel processing. The graphs show that as the

number of threads increases, the execution time decreases, while

the speedup of the performance shows a corresponding increase

for the velveth command in the de novo assembly process.

Following this, Table VI displays the outcomes of executing

the velvetg command using different thread counts on a

consistent 8-core system. The configuration of 8 cores and 8

threads demonstrates excellent performance, with an execution

time of 23.27 minutes and a speedup of 4.37.

TABLE VI. RESULT FOR TIME, SPEEDUP, EFFICIENCY FOR VELVETG

COMMAND USING 8 CORE QUANTA SERVER

Number of

Threads

1 2 4 8 16

Time

(minutes)
101.68 57.41 34.67 23.27 25.26

Speedup - 1.77 2.93 4.37 4.03

Efficiency

(%)

- 88.5 73.25 54.63 25.19

The results are also displayed graphically to offer a more

detailed viewpoint. Fig. 6 shows a bar chart comparing thread

count with execution time for the velvetg command using 8

cores. Meanwhile, Fig. 7 displays a bar chart comparing thread

count with speedup for the same setup on a Core Quanta Server.

Fig. 6. Bar chart for comparison of Number of Threads against The Execution

Time for velvetg command using 8 Core Quanta

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

87

Fig. 7. Bar chart for comparison of Number of Threads against The Speedup for

velvetg command using 8 Core Quanta

Analysed from the graphs of the velvetg command, it is

evident that an increase in the thread count leads to a reduction

in the time taken for execution. However, velvetg's execution

time is longer with 16 threads than 8 threads, and the speedup is

smaller with 16 threads than 8 threads. There may be an

imbalance between the advantages of parallelism and the

additional overhead of using 16 threads. Thread overhead and

resource contention are probable causes of inefficiencies and

bottlenecks in the assembly process when using a higher number

of threads.

Moreover, Fig. 8 provides a bar chart illustrating the

efficiency of both velveth and velvetg commands across the

usage of different numbers of threads. When utilising multiple

threads, we often observed that velvetg performs more

efficiently than velveth in our de novo assembly project. Velvetg

consistently outperformed velveth in optimising the assembly

across various thread counts. In our study on using Velvet,

parallelisation benefits are more evident during the assembly

optimisation phase with velvetg than during the initial hash

building with velveth.

Fig. 8. Bar chart for comparison between velveth and velvetg command
efficiency across the usage of different number of threads

V. CONCLUSIONS

In conclusion, our investigation into de novo assembly

processes using ABySS and Velvet assemblers has yielded

significant findings. ABySS demonstrated its superiority with an

8-core and 8-thread setup while proving its adaptability with an

8-core and 12-thread configuration. Conversely, Velvet

showcased exceptional performance with 8 cores and 16 threads

for the velveth command and 8 cores and 8 threads for the

velvetg command. These results underscore the importance of

careful configuration selection for optimal performance in de

novo assembly procedures.

Our study not only deepens our understanding of the

relationships among core count, thread count, execution time,

and speedup for ABySS and Velvet assemblers but also provides

practical guidance for researchers and practitioners. The

diminishing returns observed with higher thread counts

underscore the need for a balanced approach to parallelisation.

By carefully selecting configurations, researchers can optimise

the performance of de novo assembly procedures. These

findings are particularly valuable for those working in

parallelised computing environments and aiming to enhance the

efficiency of transcriptome analysis using ABySS and velvet

assemblers.

It is important to acknowledge the limitations of our study.

One notable constraint is the absence of GPU utilization in the

ABySS and Velvet Assembler program, which could have

significantly improved processing efficiency. Relying solely on

CPU resources may have restricted the speed and scalability of

the de novo assembly operations. These limitations underscore

the need for future research to focus on integrating modern

hardware resources, particularly GPUs, to maximize efficiency

in transcriptomic analysis. The observed restrictions also

highlight the ongoing need for assemblers to adapt and integrate

with advanced hardware resources to optimize the efficiency of

transcriptomic analysis.

ACKNOWLEDGMENT

This research was supported by Faculty of Computer

Sciences and Information Technology, and Institute for

Mathematical Research, Universiti Putra Malaysia.

CONFLICTS OF INTEREST

The author(s) declare(s) that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] I. Boria, L. Boatti, G. Pesole, and F. Mignone. (2013). NGS-trex:

next generation sequencing transcriptome profile explorer. BMC

bioinformatics, 14, 1-8.

[2] M. Ellis, E. Georganas, R. Egan, S. Hofmeyr, A. Buluç, B. Cook,

L. Oliker, & K. Yelick. (2017). Performance characterization of

de novo genome assembly on leading parallel systems. In Euro-

Par 2017: Parallel Processing: 23rd International Conference

on Parallel and Distributed Computing, Santiago de Compostela,

Spain, August 28–September 1, 2017, Proceedings 23 (pp. 79-

91). Springer International Publishing.

Nur Hafizah Zaideen et al. / IJIC Vol. 14 No. 2 (2024) 81-88

88

[3] H. Peréz-Sánchez, J. M. Cecilia, and I. Merelli. (2014). The role

of high performance computing in bioinformatics. 2nd

International Work-Conference on Bioinformatics And

Biomedical Engineering. Proceedings of 2nd International Work-

Conference on Bioinformatics and Biomedical Engineering.

[4] U. Aldasoro, L. F. Escudero, M. Merino, and G. Perez. (2017). A

parallel branch-and-fix coordination based matheuristic

algorithm for solving large sized multistage stochastic mixed 0–

1 problems. European Journal of Operational Research, 258(2),

590-606.

[5] A. Sudhagar, G. Kumar, and M. El-Matbouli. (2018).

Transcriptome analysis based on RNA-Seq in understanding

pathogenic mechanisms of diseases and the immune system of

fish: a comprehensive review. International Journal of Molecular

Sciences, 19(1), 245.

[6] E. Georganas, R. Egan, S. Hofmeyr, E. Goltsman, B. Arndt, A.

Tritt, A. Buluç, L. Oliker and K. Yelick (2018). Extreme scale de

novo metagenome assembly. SC18: International Conference for

High Performance Computing, Networking, Storage and

Analysis (pp. 122-134). IEEE.

[7] X. Liao, M. Li, Y. Zou, F. Wu, and J. Wang. (2019). Current

challenges and solutions of de novo assembly. Quantitative

Biology, 7(2), 90-109.

[8] I. Birol, S. D. Jackman, C. B. Nielsen, J. Q. Qian, R. Varhol, G.

Stazyk, R. D. Morin, Y. Zhao, M. Hirst, J. E. Schein, and D. E.

Horsman. (2009). De novo transcriptome assembly with ABySS.

Bioinformatics, 25(21), 2872-2877.

[9] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. M.

Jones, and I. Birol. (2009). ABySS: a parallel assembler for short

read sequence data. Genome research, 19(6), 1117-1123.

[10] E. Costa and G. Silva, (2023). The velvet assembler using

OpenACC directives. Proceedings of International Conference

on Bioinfor. 92, 72-81.

[11] O. Gupta, S. Rani, and D. C. Pant. (2011). Impact of parallel

computing on bioinformatics algorithms. Proceedings 5th IEEE

International Conference on Advanced Computing and

Communication Technologies. 206-209.

[12] W. D. Ong, L.-Y. C. Voo, and V. S. Kumar. (2012). De novo

assembly, characterization and functional annotation of pineapple

fruit transcriptome through massively parallel sequencing.

[13] B. G. Jackson, M. Regennitter, X. Yang, P. S. Schnable, and S.

Aluru. (2010). Parallel de novo assembly of large genomes from

high-throughput short reads. 2010 IEEE International

Symposium on Parallel & Distributed Processing (IPDPS) (pp.

1-10). IEEE.

[14] G. Guidi, O. Selvitopi, M. Ellis, L. Oliker, K. Yelick, and A.

Buluç. (2021). Parallel string graph construction and transitive

reduction for de novo genome assembly. 2021 IEEE

International Parallel and Distributed Processing Symposium

(IPDPS) (pp. 517-526). IEEE.

[15] S. B. Iryanto, W. A. Kusuma, and H. Sukoco, (2018).

Performance analysis of parallel de novo genome assembly in

shared memory system. IOP Conference Series: Earth and

Environmental Science (Vol. 187, No. 1, p. 012032). IOP

Publishing.

[16] G. Guidi, G. Raulet, D. Rokhsar, L. Oliker, K. Yelick, and A.

Buluç. (2022). Distributed-memory parallel contig generation for

de novo long-read genome assembly. Proceedings of the 51st

International Conference on Parallel Processing (pp. 1-11).

[17] L. J. Bin, N. A. W. A. Hamid, Z. Ismail, and M. F. Laham. (2021).

Fast processing rna-seq on multicore processor. Baghdad Science

Journal, 18(4 Suppl.), 1413-1413.

[18] H. Gamaarachchi, H. Samarakoon, S. P. Jenner, J. M. Ferguson,

T. G. Amos, J. M. Hammond, H. Saadat, M. A. Smith, S.

Parameswaran, and I.W. Deveson. (2022). Fast nanopore

sequencing data analysis with SLOW5. Nature

biotechnology, 40(7), pp.1026-1029.

[19] D. Naishlos, J. Nuzman, C.-W. Tseng, and U. Vishkin. (2001).

Evaluating the XMT parallel programming model.

In International Workshop on High-Level Parallel Programming

Models and Supportive Environments (pp. 95-108). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[20] E. Kornobis, L. Cabellos, F. Aguilar, C. Frías-López, J. Rozas, J.

Marco, and R. Zardoya, 2015. TRUFA: a user-friendly web

server for de novo RNA-seq analysis using cluster

computing. Evolutionary Bioinformatics, 11, EBO-S23873.

[21] M. Hölzer and M. Marz. (2019). De novo transcriptome

assembly: A comprehensive cross-species comparison of short-

read RNA-Seq assemblers. Gigascience, 8(5), giz039.

[22] P. Carvajal-Lopez, F. D. von Borstel, A. Torres, G. Rustici, J.

Gutierrez, and E. Romero-Vivas. (2018). Microarray-based

quality assessment as a supporting criterion for de novo

transcriptome assembly selection. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 17(1), 198-206

[23] X. Shi, X. Wang, A. F. Neuwald, L. Halakivi-Clarke, R. Clarke,

and J. Xuan. (2021). A Bayesian approach for accurate de novo

transcriptome assembly. Scientific reports, 11(1), 17663.

[24] J. Costa-Silva, D. S. Domingues, D. Menotti, M. Hungria, and F.

M. Lopes. (2023). Temporal progress of gene expression analysis

with RNA-Seq data: A review on the relationship between

computational methods. Computational and Structural

Biotechnology Journal, 21, 86-98.

[25] J. Costa-Silva, D. S. Domingues, D. Menotti, M. Hungria, and F.

M. Lopes. (2021). Computational methods for differentially

expressed gene analysis from RNA-Seq: an overview. arXiv

preprint arXiv:2109.03625.

[26] S. Oh, S. Song, G. Grabowski, H. Zhao, and J. P. Noonan. (2013).

Time series expression analyses using RNA‐seq: A statistical

approach. BioMed Research International, 2013(1), 203681.

[27] D. Rosati, M. Palmieri, G. Brunelli, A. Morrione, F. Iannelli, E.

Frullanti, and A. Giordano. (2024). Differential gene expression

analysis pipelines and bioinformatic tools for the identification of

specific biomarkers: A review. Computational and Structural

Biotechnology Journal.

[28] M. Makino, K. Shimizu, and K. Kadota. (2024). Enhanced

clustering-based differential expression analysis method for

RNA-seq data. MethodsX, 12, 102518.

[29] L. A. E. Nagai, S. Lee, and R. Nakato. (2024). Protocol for

identifying differentially expressed genes using the RumBall

RNA-seq analysis platform. STAR Protocols, 5(1), 102926.

[30] N. Ariffin, D. W. Newman, M. G. Nelson, R. O’cualain, and S. J.

Hubbard. (2024). Proteogenomic Gene Structure Validation in

the Pineapple Genome. Journal of Proteome Research, 23(5),

1583-1592.

