
International Journal of Innovative Computing 15(1) 131−137

131

Cryptography for Blockchain System:
Comparative Analysis of Cryptographic Algorithms

Woon Zi Jian1 & Hazinah Kutty Mammi2
Faculty of Computing

Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Johor, Malaysia

Email: woonjian@graduate.utm.my1; hazinah@utm.my2

Submitted: 13/11/2024. Revised edition: 20/5/2025. Accepted: 20/5/2025. Published online: 27/5/2025
DOI: https://doi.org/10.11113/ijic.v15n1.500

Abstract—This study aims to investigate the best cryptographic
algorithm for Blockchain Networks. The rapid adoption of
blockchain technology and cryptocurrencies has generated
worries regarding their long-term security, specifically
concerning the cryptographic algorithms used to protect these
systems. Despite well-established cryptographic technologies,
blockchain is not inherently secure and requires a comprehensive
assessment to defend against cybersecurity threats and
vulnerabilities. Therefore, this research has been conducted and
aims to discover the best cryptographic algorithms for
cryptocurrency performance among the SHA-256, Keccak-256,
SHA-512, and Keccak-512. Experiments are conducted and the
conclusion can be made by analysing the results, and the best
cryptographic algorithm is selected for the cryptocurrency
blockchain system.

Keywords—Blockchain Network, Cybersecurity, Cryptographic
Algorithm

I. INTRODUCTION

In recent years, blockchain technology has garnered much

attention as a promising solution to many problems plaguing
traditional centralized systems. At the heart of blockchain
technology is a decentralized, secure network maintained by
cryptographic algorithms. Cryptography, the science of secure
communication in the presence of adversaries, is an essential
component of blockchain systems because it guarantees
transaction confidentiality, authenticity, and integrity [1].

For example, Ethereum is a decentralized, open-source
blockchain platform that has garnered immense popularity over
the past few years due to its ability to support the creation of
decentralized applications (dApps) and smart contracts. Miners
solve intricate mathematical problems to validate transactions

and add them to the Ethereum blockchain as part of the proof-
of-work consensus mechanism [2]. However, the security and
efficacy of the Ethereum network are heavily dependent on the
cryptographic algorithms used to protect it.

Selecting a cryptographic algorithm is crucial for ensuring
the security and performance of blockchain systems. For
assuring the integrity of the blockchain, a cryptographic
algorithm must be robust, efficient, and attack-resistant.
Concerns regarding efficacy and security can make developing
and adopting new cryptographic algorithms difficult [3].

II. PROBLEM BACKGROUND

The rapid adoption of blockchain technology and

cryptocurrencies has generated worries regarding their long-
term security, specifically concerning the cryptographic
algorithms used to protect these systems. Many cryptographic
methods now employed in blockchain systems, including
Ethereum, are susceptible to computer assaults.

As computing technology evolves, creating and deploying
cryptography algorithms immune to attacks by these machines
becomes increasingly crucial. However, integrating
cryptography into existing blockchain systems can be difficult,
and implementing these algorithms in various cryptocurrencies
must be evaluated.

Cryptographic algorithms are essential for the security and
privacy of blockchain systems, such as the Ethereum platform.
To ensure the integrity of transactions on its blockchain,
Ethereum employs Keccak-256 cryptographic algorithm that
securing the network and resistant to attacks.

Despite numerous kinds of research on cryptographic
algorithm performance in blockchain systems, there is a

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

132

significant gap that exists regarding comparisons between the
specific cryptographic algorithms employed by Ethereum–
namely SHA-256, SHA-512, Keccak-256, and Keccak-512.
Most studies have focused on various algorithms without
focusing on any particular blockchain platform. This research
must be carried out to better comprehend the efficiency and
robustness of these cryptographic algorithms within Ethereum,
one of the leading blockchain platforms for widespread
adoption.

A complete analysis of cryptography algorithms is
presented as a solution to this challenge. Therefore, the
analysis is conducted to analyse the performance of various
cryptographic algorithms, such as SHA-256 cryptography,
Keccak-256 cryptography, SHA-512 cryptography, and
Keccak-512 cryptography to identify the most suitable
algorithm for secure and efficient transactions. Although
numerous studies have explored cryptographic algorithms in
general blockchain systems, few have directly compared the
specific algorithms used in Ethereum within a controlled
simulation environment. Existing literature often lacks focus on
Ethereum’s context or omits important metrics such as CPU
load and memory usage. Therefore, this research fills a unique
gap by analyzing the performance of SHA and Keccak
algorithm variants using detailed resource metrics specifically
in the context of Ethereum blockchain simulations.

This study differs from past works by conducting an
experimental analysis of cryptographic algorithms using
practical performance indicators, enabling better decision-
making for blockchain system design and optimization.

III. LITERATURE REVIEW

A cryptographic algorithm that can protect a blockchain

system and resistant to all attack may be quite challenging.
Therefore, numerous related studies have been published about
the performance of the cryptographic algorithms.

A. Investigating The Efficiency of Cryptographic
Algorithms In Online Transactions

Lamprecht, C., et al. [4] had investigating the efficiency of

cryptographic algorithms in online transactions. The algorithms
involved are MD2, MD4, MD5, RIPEMD128, RIPEMD160,
SHA, SHA-0, SHA-1, SHA-256, SHA-512, and Tiger. The
tools used in this experiment was Java Cryptix Libraries, Java,
Linux Fedora Core 2, PC, and Trusted Services Integration Kit
(TSIK). The experiment is conducted in a virtual machine and
the Java coding was taken from the Java Cryptrix Libraries.

B. Performance Analysis of Cryptographic Hash Function
Suitable for Use in Blockchain

Another research done by Kuznetsov, A., et al. [5] they are

doing performance analysis of cryptographic hash function
suitable for use in blockchain. The algorithms tested are GOST
34.311, STRIBOG256, STRIBOG512, KECCАK-256,
KECCАK-512, SHA-256, SHA-512, RIPEMD160,
BLAKE2B, Whirlpool, and they tested in their own machine
and using HashCat software.

Cryptocurrencies rely on cryptographic algorithms to
secure their blockchain networks and safeguard transactions
and data from unauthorised access or tampering.
Cryptographic algorithms perform fundamental cryptographic
operations such as encryption, decryption, hashing, and digital
signature generation. Below are some examples of
cryptographic algorithms that can be implement into current
blockchain systems.
x

1) SHA-256

Secure Hash Algorithm 256 (SHA-256) is a cryptographic
hash function that generates a fixed-size output (256 bits) from
any length input message. Fig. 1 shows the structure of SHA-
256. A hash function generates a "fingerprint" of a message or
data for authentication. The length of the hash code generated
by the algorithm determines the resistance of the hash code to
brute-force attacks. SHA-256 is extensively employed in
applications requiring digital signatures, authentication,
message integrity, and data protection [8].

Fig. 1. Structure of SHA-256 [10]

2) SHA-512

SHA-512 is a cryptographic hash function with a fixed
output capacity of 512 bits. The structure of SHA-512 is shown
in Fig 2. It belongs to the Secure Hash Algorithm family,
alongside SHA-1, SHA-2, and SHA-3. By using an extended
message schedule and larger hash values, SHA-512 is intended
to be more secure than its predecessor, SHA-256. It is
commonly used in digital signatures, message authentication
codes, and other applications where data integrity is crucial [7].

Fig. 2. Structure of SHA-512 [11]

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

133

3) Keccak-256

Keccak-256 is precisely engineered to defend against every

recognized attack with utmost security. The structure of
Keccak-256 is shown in Fig 3.This hash function belongs to
the esteemed SHA-3 family, which is lauded for its impeccable
performance. By accepting input messages of diverse lengths,
Keccak-256 flawlessly churns fixed-length outputs that are 256
bits long [13]. This algorithm efficiently executes both hashing
and encryption functions by employing a sponge-based
mechanism in its design. A significant feature of this technique
is that it absorbs an input message within a state using the
sponge structure before compressing said content into output
results.

Fig. 3. Structure of Keccak-256 [9]

4) Keccak-512

Keccak-512 algorithm utilizes a sponge construction

inherited from well-known hash functions like SHA-256 and
SHA-3. Fig 4 shows the structure of Keccak-512. Part of a
larger group of this kind, the Keccak hash function family-
Keccak -512 cemented its place in cryptographic history for
being one of the most secure algorithms available [6]. Keccak-
512's design is intended to counteract various attacks, such as
collision attacks, preimage attacks, and second preimage
attacks. Moreover, it boasts of being immune to length
extension attacks leveraged to produce new messages with an
identical hash value to an existing one.

Fig. 4. Structure of Keccak-512 [1]

While prior studies such as Lamprecht et al. (2006) and

Kuznetsov et al. (2021) have explored the performance of
cryptographic algorithms in blockchain environments, many of
them focus primarily on theoretical comparisons or hashing
speed. These studies often omit critical system-level

performance data such as CPU usage, memory consumption,
and throughput, which are vital in real-world deployments. In
contrast, this study provides a comprehensive experimental
evaluation of four widely used cryptographic hash
algorithms—SHA-256, SHA-512, Keccak-256, and Keccak-
512—based on multiple performance metrics. The goal is to
offer practical insights for developers and blockchain system
designers by providing reproducible performance results under
varying data loads.

IV. RESEARCH FRAMEWORK

This research consists of three phases. For Phase 1, a
literature review studying existing cryptographic algorithms
and their characteristics was conducted. Next, the second phase
was to design, develop, and test the experiment performed in
Phase 2. Lastly, the experiment was conducted, and its results
were analysed and discussed in Phase 3. The workflow of the
overall research framework is illustrated in Fig. 5.

Fig. 5. Workflow of the Overall Research Framework

A. Phase 1: Review and Study of Techniques and
Characteristics

In Phase 1, information related to the research topic is
gathered, and these resources are obtained through journals,
websites, and articles. Then, the helpful information helps to
investigate various cryptographic algorithms and
characteristics pertinent to blockchain systems. This phase
entails collecting data on different cryptographic algorithms
and their applications in cryptocurrency and comprehending
their strengths, weaknesses, and performance metrics. The
overall planning for this research is also done in this phase to
ensure the following process can always be on track. At the end
of Phase 1, the first research objective is achieved.

B. Phase 2: Design, Develop, and Test the Experiment

Phase 2 focused on designing and developing the proposed
method. Based on the results from Phase 1, the experiment is

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

134

designed to fulfil the problem background, research objectives,
and scope of this research. The evaluation criteria and metrics
will be defined to assess the cryptographic algorithms'
performance and security based on cryptocurrency. Then, the
proposed method was developed, and a simple experiment was
tested. If the experiment fails, the experiment will be
redesigned until it succeeds. The second objective is achieved
at the end of Phase 2.

C. Phase 3: Implementation, Result Analysis and
Discussion

In Phase 3, the experiment was running based on the tested

experiment from Phase 2. Then, the data was collected, and the
collected data were analysed in this final phase, and the results
obtained from the evaluations and experiments were
interpreted. The performance of different cryptographic
algorithms for cryptocurrency was compared, including the
strengths and weaknesses identified during the review phase.
The results will be discussed, conclusions will be drawn, and
recommendations for selecting the best cryptographic
algorithms for cryptocurrency have been made. At the end of
this phase, objective three in this research was achieved and led
to the end of Phase 3.

V. EXPERIMENT DESIGN

The flowchart for the whole experiment design is shown

below in Fig. 6.

Fig. 6. Experiment Design Flowchart

The experiment starts by selecting cryptographic

algorithms suitable for cryptocurrency blockchain

environments. Cryptographic algorithms such as SHA-256,
Keccak-256, SHA-512, and Keccak-512 were chosen due to
their prominent roles in various applications worldwide.

Then, the coding of these cryptographic algorithms needs to
be implemented using Microsoft Visual Studio Code as our
development environment platform because it provides us with
a sense of independence coupled with Java programming
language, wherein its ease of use translates into seamless
integration with other existing systems. Before evaluating their
performance within blockchain ecosystems, we test these
algorithms' accuracy and reliability to ensure minimum errors
occur in the experiment later. Within the experiment, metrics
such as execution speed, throughput, and resource utilization
were used to test the performance of the algorithms.

After that, all the experiment is conducted. The test cases
are run based on the chosen cryptographic methods and the
transaction data size. Data for each success metric is collected,
and each algorithm's strengths and weaknesses are identified.

Lastly, the data based on performance compares the
cryptographic algorithms. The results are examined to
determine the cryptocurrency blockchain system's best
algorithm. The experiment's design structured the test of the
correctness and speed of the algorithms that can be added to
the blockchain systems.

VI. RESULT AND DISCUSSION

The experiment tested three data sets: 1MB, 5MB, and

10MB JSON files. The overall experimental result for SHA-
256, SHA-512, Keccak-256, and Keccak-512 cryptographic
algorithms on 1MB is shown in the Table I.

TABLE I. OVERALL PERFORMANCE DATA FOR SHA-256, SHA-512,
KECCAK-256 AND KECCAK-512 ON HASHING 1MB JSON FILE

Algorithm Average

Hashing
Speed
(MB/s)

Average
Hashing

Time
(ms)

CPU
Load

(Before)

CPU
Load

(After)

Memory
Usage

(Before)

Memory
Usage
(After)

Throughput
(MB)

SHA-256 194.108 5.07 0.16 0.16 1.49 1.53 193.06

Keccak-
256

486.113 2.02 0.26 0.19 7.5 7.68 484.53

SHA-512 284.405 3.46 0.17 0.19 1.49 1.57 282.98

Keccak-
512

244.688 4.00 0.25 0.18 7.5 7.68 244.69

Table I shows the performance data of SHA-256, SHA-
512, Keccak-256, and Keccak-512 when hashing a 1MB JSON
file in terms of average hashing speed, average hashing time,
average CPU load before and after, average memory usage
before and after and throughput. Based on the performance
data in Table I, the performance trends and comparisons for the
algorithms SHA-256, SHA-512, Keccak-256, and Keccak-512
when hashing a 1MB JSON file are discussed below. Also,
graphs were constructed to have a better picture to explain the
data.

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

135

Fig. 7. Average Hashing Speed for 1MB JSON File

Fig. 7 shows the hashing speeds of SHA-256, SHA-512
Keccak-256 and Keccak-512 for a 1MB JSON File. By
comparing the hashing speeds, Keccak-256 stands out as the
most efficient, with a speed of 486.113 MB/s surpassing the
other algorithms by a significant margin. Following closely is
SHA-512, with a speed of 284.405 MB/s, Keccak-512 at
244.688 MB/s. SHA-256 lags with the slowest average
hashing speed of 194.108 MB/s. This suggests that when it
comes to processing speed for 1MB JSON files Keccak-256
proves to be the algorithm.

Fig. 8. Average Hashing Time for 1MB JSON File

Fig. 8 illustrates the average hashing time for SHA-256,

SHA-512, Keccak-256, and Keccak-512 for 1MB JSON File.
In terms of hashing time, Keccak-256 is the fastest, with an
average of 2.02 milliseconds. SHA-512 follows with an
average of 3.46 milliseconds and Keccak-512 at 4.00
milliseconds. SHA-256 takes the longest, with an average time
of 5.07 milliseconds. This further confirms that Keccak-256 is
the most efficient algorithm in terms of processing time for the
given data size.

Fig. 9. Average CPU Load for 1MB JSON File

Fig. 9 illustrates the average CPU load for SHA-256,

SHA-512, Keccak-256, and Keccak-512 for 1MB JSON File.
By evaluating CPU load, SHA-256 and SHA-512 show
minimal impact on CPU usage, with both algorithms starting
and ending at around 0.16 and 0.17 respectively before
hashing and after hashing. Keccak-256 starts with a higher
CPU load of 0.26 before hashing but drops to 0.19 after
hashing. Keccak-512 also starts with a higher load of 0.25 and
drops to 0.18 after hashing. This indicates that while Keccak
algorithms may initially use more CPU resources, their
efficiency reduces load post-hashing.

Fig. 10. Average Memory Usage for 1MB JSON File

Fig. 10 shows the bar graph of average memory usage for
SHA-256, SHA-512, Keccak-256, and Keccak-512 for 1MB
JSON File. For memory usage, both SHA-256 and SHA-512
start with 1.49 MB and slightly increase to 1.53 MB and 1.57
MB respectively after hashing. Keccak-256 and Keccak-512
start with a higher memory usage of 7.5 MB, which increases
to 7.68 MB after hashing. This suggests that while Keccak
algorithms are faster, they require more memory compared to
SHA algorithms.

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

136

Fig. 11. Throughput for 1MB JSON File

Fig. 11 presents the graph of the average hashing speed for
SHA-256, SHA-512, Keccak-256, and Keccak-512 for 1MB
JSON File. In terms of throughput, which combines speed and
efficiency, Keccak-256 leads again with a throughput of
484.53 MB, significantly higher than the other algorithms.
SHA-512 follows with 282.98 MB, then Keccak-512 with
244.69 MB, and SHA-256 with the lowest throughput of
193.06 MB. This further reinforces the conclusion that
Keccak-256 is the most efficient algorithm overall for 1MB
JSON files, providing the highest throughput with lower
execution time.

Based on this experiment, the result shows that SHA-256
has an average hashing time of 5.07 milliseconds and a speed
of 194.108 MB/s, with minimal impact on system resources,
making it suitable for 1MB JSON files. SHA-512 performs
faster, with a 3.46 millisecond hashing time and a speed of
284.405 MB/s. It has a slightly higher memory usage post-
operation but is optimized for 64-bit processors, making it
efficient for 1MB JSON files. Keccak-256 demonstrates
exceptional performance with a 2.02 millisecond hashing time
and a speed of 486.113 MB/s due to its higher absorption rate.
It utilizes CPU resources and slightly increases memory
usage, making it ideal for high-performance tasks. Keccak-
512 balances performance and security, with a 4-millisecond
hashing time and a speed of 244.688 MB/s. It efficiently
manages CPU resources with consistent memory usage,
making it suitable for scenarios prioritizing security.

Comparing SHA-256 and SHA-512, SHA-512 is faster
(284.405 MB/s vs. 194.108 MB/s) and more efficient for 1MB
JSON files, despite slightly higher memory usage. Keccak-
256 and Keccak-512 show that Keccak-256 is faster (486.113
MB/s vs. 244.688 MB/s) and more efficient for high-
performance applications, while Keccak-512 is better for
security-focused tasks. The results and trends for hashing
5MB and 10MB JSON files are the same. Hence, it can help to
conclude that Keccak-256 is the best algorithm in terms of
execution time and throughput, while SHA-256 is the best
algorithm in terms of resource utilization.

VII. CONCLUSION

This research compared the performance of four

cryptographic algorithms—SHA-256, SHA-512, Keccak-256,
and Keccak-512—in a simulated blockchain framework. The
results obtained with varied file sizes were always consistent,
with Keccak-256 providing the optimal hashing speed,
execution time, and throughput. Keccak-256 had a hashing
speed of 486.113 MB/s and the least average hashing time of
2.02 milliseconds. Nevertheless, it had marginally higher
memory consumption than SHA algorithms.

Conversely, SHA-256 and SHA-512 had negligible CPU
and memory consumption and were thus better suited to low-
resource environments at the expense of speed. Keccak-512
offered a good trade-off between performance and security and
was hence apt for applications requiring high-security levels.

The results conclude that Keccak-256 is the best-
performing algorithm among the algorithms considered when
speed and throughput are the objectives. This presents useful
information to blockchain developers and system designers
interested in selecting optimal cryptographic algorithms.

Shortcomings in the present study are its reliance on
simulations and a constrained testing setting. The performance
might differ in real deployments or under fluctuating network
loads. Future research should investigate larger data sizes,
testnet integrations, and performance on heterogeneous
hardware architectures. Further security evaluation would also
be warranted to accompany performance testing.

This paper contributes to the field by providing a practical,
system-oriented comparison of commonly used cryptographic
algorithms, using experimental data that extends beyond
theoretical metrics often emphasized in previous studies.

ACKNOWLEDGMENT

We would like to thank members of the Computer Science

Department of Universiti Teknologi Malaysia for their helpful
feedback and support.

CONFLICTS OF INTEREST

The author(s) declare(s) that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] Habib, G., Sharma, S., Ibrahim, S., Ahmed, I., Qureshi, S., &
Ishfaq, M. (2022). Blockchain technology: Benefits,
challenges, applications, and integration of blockchain
technology with cloud computing. Future Internet, 14(11), 341.
https://doi.org/10.3390/fi14110341.

[2] Frankenfield, J. (2023). Decentralized applications (dApps).
investopedia.
https://www.investopedia.com/terms/d/decentralized-
applications-dapps.asp.

[3] Guo, H., & Yu, X. (2022). A survey on blockchain technology
and its security. Blockchain: Research and Applications, 3(2),
100067.

[4] Lamprecht, C., Van Moorsel, A., Tomlinson, P., & Thomas, N.
(2006). Investigating the efficiency of cryptographic algorithms

Woon Zi Jian & Hazinah Kutty Mammi / IJIC Vol. 15 No. 1 (2025) 131−137

137

in online transactions. International Journal of Simulation:
Systems, Science & Technology, 7(2), 63−75.

[5] Kuznetsov, A., Oleshko, I., Tymchenko, V., Lisitsky, K.,
Rodinko, M., & Kolhatin, A. (2021). Performance analysis of
cryptographic hash functions suitable for use in blockchain.
International Journal of Computer Network & Information
Security, 13(2), 1−15.

[6] Bertoni, G., Daemen, J., Peeters, M., & Van Assche, G. (2009).
The road from Panama to Keccak via RadioGatún. Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik.

[7] Khaishagi, Z. (n.d.). Cryptography: Explaining SHA-512.
Medium. https://medium.com/@zaid960928/cryptography-
explaining-sha-512-ad896365a0c1.

[8] Rachmawati, D., Tarigan, J. T., & Ginting, A. B. C. (2018). A
comparative study of Message Digest 5(MD5) and SHA256
algorithm. Journal of Physics: Conference Series, 978.

[9] Analog Devices. (n.d.). Back to basics: Secure hash algorithms.
analog devices. https://www.analog.com/en/technical-
articles/back-to-basics-secure-hash-algorithms.html.

[10] Tran, Thi Hong & Hoai Luan, Pham & Nakashima, Yasuhiko.
(2021). A High-Performance Multimem SHA-256 Accelerator
for Society 5.0. IEEE Access, 1−1.
10.1109/ACCESS.2021.3063485.

[11] P G, Shynu & Rk, Nadesh & Menon, Varun & Parameswaran,
Venu & Abbasi, Mahdi & Khosravi, Mohammad. (2020). A
secure data deduplication system for integrated cloud-edge
networks. Journal of Cloud Computing Advances Systems and
Applications, 9, 1−12. 10.1186/s13677-020-00214-6.

[12] CAST, Inc. (n.d.). SHA-3. CAST, Inc. https://www.cast-
inc.com/security/encryption-primitives/sha-.

[13] Ranadive, S. S., Sawant, H. S., & Pinjarkar, J. E. (2022).
Secure file storage on cloud computing using cryptographic
algorithm. International Journal for Research in Applied
Science and Engineering Technology.

\

	I. INTRODUCTION
	II. PROBLEM BACKGROUND
	III. LITERATURE REVIEW
	A. Investigating The Efficiency of Cryptographic Algorithms In Online Transactions
	B. Performance Analysis of Cryptographic Hash Function Suitable for Use in Blockchain
	1) SHA-256
	2) SHA-512
	3) Keccak-256
	4) Keccak-512

	IV. RESEARCH FRAMEWORK
	A. Phase 1: Review and Study of Techniques and Characteristics
	B. Phase 2: Design, Develop, and Test the Experiment
	C. Phase 3: Implementation, Result Analysis and Discussion

	V. EXPERIMENT DESIGN
	VI. RESULT AND DISCUSSION
	VII. CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

