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Abstract—With the growing frequency of network attacks, 

traditional anomaly-based intrusion detection models often fail to 

identify advanced attack patterns and suffer from high false 

positive rates. This paper proposes a hybrid deep learning model 

integrating Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and an Attention Mechanism to enhance 

detection accuracy and robustness. Leveraging CNNs for spatial 

feature extraction, LSTMs for temporal pattern recognition, and 

Attention Mechanisms for prioritizing critical data, the model 

effectively identifies diverse intrusion types. Using the NF-

UNSW-NB15-v2 dataset, this research incorporates advanced 

preprocessing techniques such as Recursive Feature Elimination 

with Cross-Validation (RFECV) and Synthetic Minority 

Oversampling Technique (SMOTE). Experimental results 

demonstrate improved performance across key metrics, offering 

a robust framework for real-time intrusion detection in complex 

network environments. 
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Convolutional Neural Network (CNN), Long Short-Term 
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I. INTRODUCTION

The rapid growth of network applications has significantly 

increased the volume and complexity of network traffic, 

creating an ideal environment for cyberattacks [4]. These 

attacks range from Denial of Service (DoS) to sophisticated 

Advanced Persistent Threats (APTs), posing serious challenges 

to network security. Intrusion Detection Models (IDMs) have 

emerged as critical tools for identifying and mitigating such 

threats by monitoring network activity for abnormalities. 

However, traditional IDMs, especially those relying on 

signature-based techniques, are often unable to detect novel 

and evolving threats due to their dependency on predefined 

attack signatures. This limitation leads to high false positive 

rates and reduced detection accuracy in dynamic network 

environments. 

The advent of deep learning has introduced powerful tools 

for addressing these challenges. Deep learning models, 

particularly Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) networks, offer advanced 

capabilities in feature extraction and temporal pattern 

recognition [5], [6]. CNNs excel at identifying spatial features 

in structured data, while LSTMs are designed to capture 

dependencies over time, making them well-suited for analyzing 

sequential network traffic data. Despite their individual 

strengths, combining these models has shown potential to 

achieve even greater detection accuracy by leveraging their 

complementary capabilities. 

Attention Mechanisms further enhance this hybrid 

approach by dynamically prioritizing the most relevant features 

in the data [9]. This reduces noise and improves the 

interpretability and robustness of the model. The integration of 

CNN, LSTM, and Attention Mechanisms offers a 

comprehensive framework for detecting anomalies in network 

traffic, addressing limitations in existing models. 

This paper proposes a novel anomaly-based IDM 

leveraging this hybrid approach. Using the NF-UNSW-NB15-

v2 dataset, a highly diverse and realistic network traffic dataset, 

the model incorporates advanced preprocessing techniques 

such as RFECV for feature selection and SMOTE for data 

balancing. The proposed model is evaluated using various 

performance metrics, including accuracy, precision, recall, and 
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F1-score, demonstrating its effectiveness in handling diverse 

attack types. 

 

II. RELATED WORKS 

 

Intrusion Detection Models (IDMs) are proactive 

cybersecurity systems that monitor network activity in real-

time, issuing alerts or taking actions when potential intrusions 

are detected. Based on data sources, IDMs can be classified 

into Host-based IDM (HIDM), which monitors individual 

devices, and Network-based IDM (NIDM), which analyzes 

network traffic. Alternatively, detection strategies divide IDMs 

into anomaly-based, signature-based, and misuse-based 

approaches, each with distinct advantages and limitations [1], 

[2]. While anomaly-based systems excel in detecting novel 

attack patterns, they suffer from high false positive rates, 

especially in dynamic environments [3]. Signature and misuse 

detection methods, though accurate for known attacks, struggle 

with scalability and evolving threats [4]. Despite advancements, 

current Anomaly Network-Based Intrusion Detection Models 

(ANIDMs) face challenges such as adaptability to dynamic 

environments, handling encrypted traffic, ensuring high 

accuracy with imbalanced data, and scalability for big data 

processing [5], [6]. This research addresses these limitations 

through a hybrid CNN-LSTM-Attention model, emphasizing 

improved feature extraction, reduced false positives, and 

scalable big data processing for robust anomaly detection. 

Research on Anomaly Network-Based Intrusion Detection 

Models (ANIDMs) has advanced significantly, addressing 

issues like high false positive rates, low detection rates, and 

class imbalances. Support Vector Machines (SVMs) have been 

widely used, achieving notable accuracies in various studies, 

but often face challenges in scalability and adaptability to 

evolving threats [7], [8], [9]. Deep learning approaches, such as 

CNNs and LSTMs, have shown promising results in enhancing 

detection accuracy, with models integrating skip connections 

and attention mechanisms achieving high precision rates [10], 

[11]. Despite these advancements, challenges remain in 

handling diverse attack types, managing large-scale network 

traffic, and ensuring real-world applicability, particularly in 

IoT environments [12]. This research builds on prior work by 

combining CNN, LSTM, and Attention Mechanisms to address 

these limitations, enabling more comprehensive spatial and 

temporal feature extraction and improving overall detection 

robustness. 

Deep Learning (DL), a subfield of Machine Learning (ML), 

excels in studying the intrinsic patterns of data and has 

achieved remarkable success in areas such as text, image, and 

sound recognition, surpassing traditional techniques [13], [14]. 

By leveraging multi-layered neural networks, DL enables 

machines to mimic human activities like hearing, thinking, and 

pattern recognition, driving advancements in Artificial 

Intelligence (AI) [15], [16]. Despite its advantages, including 

strong learning capabilities, wide adaptability, and 

compatibility with frameworks like TensorFlow and PyTorch 

[17], [18], DL faces significant challenges. These include high 

computational and hardware costs, reliance on extensive 

datasets, and the complexity of designing new models, which 

demand substantial resources and expertise [19][20]. 

Addressing these limitations is crucial for expanding the 

practical applications of DL, especially in resource-constrained 

environments. The following next is review on Convolutional 

Neural Network (CNN), Long Short-Term Memory (LSTM) 

and Attention Mechanism. 

 

A. Review on CNN 

 

Convolutional Neural Network (CNN), inspired by 

biological vision systems, are key deep learning models 

excelling in computer vision tasks like object detection and 

image generation [21]. Unlike traditional neural networks, 

CNN achieve translation invariance by employing convolution 

operations, enabling them to capture local features in images 

regardless of their position [22]. Through convolutional layers, 

CNN utilize specific filters or kernels to extract diverse image 

features, making them fundamental to modern computer vision 

and deep learning research [23]. Fig. 1 shows the basic 

structure of CNN. 

 

 
 

Fig. 1. Basic Structure of CNN [24] 
 

 

B. Review on LSTM 

 

Long Short-Term Memory (LSTM) network are a 

specialized form of Recurrent Neural Network (RNN) designed 

to capture long-term dependencies in sequential data. By 

incorporating mechanisms such as forget gates, input gates, and 

output gates, LSTM dynamically retain important information 

while discarding irrelevant data, addressing the limitations of 

traditional RNN in handling long-term dependencies [25]. 

Forget gates determine which components of prior states to 

discard, while input gates control the integration of new 

information into the current cell state, and output gates decide 

the final output based on the updated memory [26]. These 

mechanisms allow LSTM to effectively manage the flow of 

information, solving issues like gradient vanishing and 

explosion in long-sequence training [27]. Fig. 2 shows the 

internal sructure of LSTM. 
 

 
 

Fig. 2. Internal Structure of LSTM [26] 



Wang Tingyue & Maheyzah Md Siraj / IJIC Vol. 15 No. 1 (2025) 73−80 

 

75 

C. Review on Attention 

 

The Attention Mechanism enhances neural networks by 

focusing on the most relevant parts of input sequences, 

mimicking human attention. By dynamically assigning 

different weights to sequence elements, it prioritizes critical 

information while reducing noise. This mechanism, utilizing 

components like Query, Key, and Value, is widely applied in 

tasks such as natural language processing and sequence 

modelling, improving the performance and efficiency of deep 

learning models [28], [29]. Fig. 3 shows Attention Mechanism. 

 

 
 

Fig. 3. Attention Mechanism [29] 

 

 

The hybridization of CNN, LSTM, and Attention 

Mechanism provides a robust solution to the multifaceted 

challenges in intrusion detection. CNN extracts spatial features 

from structured data, while LSTM captures temporal 

dependencies, making it suitable for analyzing sequential 

network traffic. The Attention Mechanism further enhances the 

model by dynamically prioritizing critical features, improving 

interpretability and accuracy. Together, these components 

create a comprehensive system capable of handling diverse and 

complex intrusion patterns, reducing false positives, and 

improving classification accuracy in real-world scenarios. 

The NF-UNSW-NB15-v2 dataset is selected for its modern 

attack diversity, extensive size, and realistic traffic 

representation. It ensures a comprehensive evaluation of the 

hybrid model’s performance across varied attack types. This 

research focuses on addressing challenges like encrypted traffic, 

data imbalance, and dynamic network conditions by integrating 

advanced deep learning techniques, aiming to enhance 

detection accuracy, efficiency, and adaptability to emerging 

threats in cybersecurity. 

Literature Review establishes the foundation for a robust 

hybrid intrusion detection model by reviewing key 

methodologies, challenges, and datasets, and justifying the 

integration of CNN, LSTM, and Attention Mechanism. 

 

III. THE PROPOSED METHODOLOGY 

 

The methodology adopted in this research to develop a 

robust hybrid intrusion detection model, which is structured 

into three distinct phases: data pre-processing, model design, 

training and evaluation. Each phase addresses specific 

challenges in intrusion detection, ensuring a systematic 

approach to achieving high detection accuracy and robustness. 

Fig. 4 shows the framework of the proposed model. 

The NF-UNSW-NB15-v2 dataset was used in this study 

due to its comprehensive and realistic representation of modern 

network traffic. Developed by the Australian Centre for Cyber 

Security (ACCS), this dataset contains over 2.5 million labeled 

records, categorized into ten distinct classes including various 

attack types and benign traffic. Each record is composed of 

more than 45 flow-based features such as protocol types, byte 

counts, packet counts, and timing characteristics. These 

features make the dataset particularly suitable for spatial and 

temporal analysis, enabling the effective application of CNN 

and LSTM layers. Moreover, its imbalanced class distribution 

poses a realistic challenge, making it ideal for evaluating the 

robustness and generalization capability of intrusion detection 

models. 
 

 
 

Fig. 4. The Proposed Research Framework 

 

 

Data pre-processing focuses on preparing the NF-UNSW-

NB15-v2 dataset for model training. Key steps include feature 

selection using Recursive Feature Elimination with Cross-

Validation (RFECV) to identify the most relevant attributes, 

addressing data imbalance with the Synthetic Minority 

Oversampling Technique (SMOTE), and creating sliding 

windows to capture temporal dependencies in network traffic. 

These steps ensure that the dataset is both representative and 

optimized for hybrid model training. 
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The hybrid model integrates CNN for spatial feature 

extraction, LSTM for capturing temporal dependencies, and the 

Attention Mechanism for prioritizing critical features. CNN 

layers detect localized patterns in network traffic, LSTM layers 

model the sequential nature of traffic flows, and the Attention 

Mechanism dynamically emphasizes relevant features, 

improving classification accuracy and reducing noise. This 

phase establishes a cohesive architecture to handle the 

complexities of intrusion detection. 

The model undergoes rigorous training using the Adam 

optimizer with a dynamically adjusted learning rate over 100 

epochs. Performance is evaluated using metrics such as 

accuracy, precision, recall, F1-score, and ROC/PR curves, with 

additional visualizations like confusion matrices to analyze 

class-wise performance. These comprehensive evaluations 

ensure the model’s reliability and ability to generalize to 

unseen data. 

The phased approach ensures that the hybrid model 

effectively integrates spatial, temporal, and prioritized feature 

extraction, demonstrating its capability to enhance detection 

accuracy and robustness in dynamic network environments. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

A. Data Pre-processing 
 

The design and setup of the research environment focus on 

tools like MySQL for managing the NF-UNSW-NB15-v2 

dataset, Anaconda for virtual environments, and PyCharm for 

development. These tools ensure an efficient and seamless 

pipeline for handling large datasets and building the hybrid 

CNN-LSTM-Attention model. 

The data collection process highlights the use of the NF-

UNSW-NB15-v2 dataset, selected for its diversity in attack 

types and realistic network traffic scenarios. The dataset is 

stored in MySQL, enabling effective preprocessing and 

querying to prepare it for model training. 

The preprocessing phase addresses critical steps like feature 

selection using RFECV, normalization with MinMaxScaler, 

and balancing classes with SMOTE. Temporal dependencies 

are captured using sliding windows, and the data is partitioned 

for fair model evaluation. This comprehensive pipeline ensures 

high-quality inputs for robust intrusion detection model 

performance. Table I shows the selected features after data pre-

processing. 
 

TABLE I.  SELECTED FEATURES AND DESCRIPTIONS 
 

Features Descriptions 

L4_SRC_PORT ipv4 source port number 

L4_DST_PORT ipv4 destination port number 

PROTOCOL IP protocol identifier byte 

L7_PROTO Layer 7 protocol (numeric) 

IN_BYTES Incoming number of bytes 

IN_PKTS Incoming number of packets 

DNS_QUERY_ID DNS query transaction Id 

OUT_BYTES Outgoing number of bytes 

OUT_PKTS Outgoing number of packets 

TCP_FLAGS Cumulative of all TCP flags 

CLIENT_TCP_FLAGS Cumulative of all client TCP 
flags 

SERVER_TCP_FLAGS Cumulative of all server TCP 

flags 

Features Descriptions 

FLOW_DURATION_MILLISECONDS Flow duration in milliseconds 

DNS_QUERY_TYPE DNS query type (e.g. 1=A, 

2=NS) 

DURATION_IN Client to Server stream duration 

(msec) 

MIN_TTL Min flow TTL 

MAX_TTL Max flow TTL 

LONGEST_FLOW_PKT Longest packet (bytes) of the 

flow 

SHORTEST_FLOW_PKT Shortest packet (bytes) of the 
flow 

MIN_IP_PKT_LEN Len of the smallest flow IP 

packet observed 

DNS_TTL_ANSWER TTL of the first A record (if 

any) 

MAX_IP_PKT_LEN Len of the largest flow IP 

packet observed 

SRC_TO_DST_SECOND_BYTES Src to dst Bytes/sec 

DST_TO_SRC_SECOND_BYTES Dst to src Bytes/sec 

RETRANSMITTED_IN_BYTES Number of retransmitted TCP 

flow bytes (src->dst) 

RETRANSMITTED_IN_PKTS Number of retransmitted TCP 
flow packets (src->dst) 

RETRANSMITTED_OUT_BYTES Number of retransmitted TCP 

flow bytes (dst->src) 

RETRANSMITTED_OUT_PKTS Number of retransmitted TCP 
flow packets (dst->src) 

SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps) 

DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps) 

NUM_PKTS_UP_TO_128_BYTES Packets whose IP size <= 128 

NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 
and <= 256 

NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 

and <= 512 

NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 

and <= 1024 

NUM_PKTS_1024_TO_1514_BYTES Packets whose IP size >1024 

and <= 1514 

TCP_WIN_MAX_IN Max TCP Window (src->dst) 

TCP_WIN_MAX_OUT Max TCP Window (dst->src) 

ICMP_TYPE ICMP Type * 256 + ICMP code 

ICMP_IPV4_TYPE ICMP Type 

 

 

B. Model Design 

 

The hybrid CNN-LSTM-Attention model is meticulously 

designed to tackle the multifaceted challenges of intrusion 

detection by leveraging the complementary strengths of its 

three main components: CNN, LSTM, and Attention 

Mechanism. CNN plays a critical role in extracting spatial 

features from structured network traffic data, identifying 

localized patterns that may signify anomalies. LSTM 

complements this by analyzing temporal dependencies, 

effectively modeling sequential behaviors and capturing long-

term dependencies in time-series data. The Attention 

Mechanism further refines the model's focus by dynamically 

prioritizing the most relevant features, enabling it to emphasize 

critical data points while reducing noise and improving 

interpretability. 

The design process, as depicted in Fig. 5, provides a 

comprehensive representation of the model's operational flow, 

starting from data preprocessing to feature extraction, temporal 

analysis, and final classification. During data preprocessing, 

steps such as feature selection, normalization, and class 
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balancing are employed to optimize input quality. The CNN 

layers then extract and condense spatial features, passing them 

to LSTM layers that model the temporal evolution of the data. 

The Attention layer assigns varying weights to different 

features, ensuring the model allocates its computational 

resources effectively to improve accuracy. 
 

 
 

Fig. 5. The Proposed CNN-LSTM-Attention Model 

 

 

Table II provides a detailed summary of the CNN-LSTM-

Attention model architecture. It outlines the layers used, their 

respective output shapes, and the number of trainable 

parameters. The model incorporates convolutional layers for 

spatial feature extraction, LSTM for temporal feature capture, 

and an Attention Mechanism for focusing on critical input 

features. Additionally, the training configuration is specified at 

the end of the table. 

 
TABLE II.  PROPOSED CNN-LSTM-ATTENTION ARCHITECTURE 

 

Layer (type) Output Shape Param 

input_3 (Input Layer) (None, 20, 39) 0 

conv1d_4 (Conv1D) (None, 20, 32) 3776 

batch_normalization_6 (None, 20, 32) 128 

dropout_8 (Dropout) (None, 20, 32) 0 

conv1d_5 (Conv1D) (None, 20, 64) 6208 

batch_normalization_7 (None, 20, 64) 256 

dropout_9 (Dropout) (None, 20, 64) 0 

lstm_2 (LSTM) (None, 20, 64) 24832 

batch_normalization_8 (None, 20, 64) 256 

dropout_10 (Dropout) (None, 20, 64) 0 

dense_10, dense_11, dense_12 
(Dense) 

(None, 20, 64) 12480 

layer_normalization_2 (None, 20, 64) 128 

global_average_pooling1d_2 

(GlobalAveragePooling1D) 

(None, 64) 0 

global_max_pooling1d_2 

(GlobalMaxPooling1D) 

(None, 64) 0 

tf. concat_2 (Concatenate) (None, 128) 0 

dense_13 (Dense) (None, 32) 4128 

dropout_11 (Dropout) (None, 32) 0 

dense_14 (Dense) (None, 10) 330 

Total Params  52,522 

Trainable Params  52,202 

Non-trainable Params  320 

Validation Split  0.2 

Verbose  1 

Table III describes the main parameter configurations of 

the CNN-LSTM-Attention model. The model takes time series 

data as input, extracts local features through CNN, then learns 

the dependencies between sequences through LSTM, and 

combines Attention mechanism to further focus on the feature 

contribution of key time steps. The Global Pooling layer 

(Global Average and Max Pooling) combines the global 

features and finally completes the classification through the full 

connection layer. This table details the design details of the 

model input dimension, the configuration of the convolutional 

and LSTM layers, the attention weight dimension, the output 

dimension of the fully connected layer, and the activation 

function. 

 
TABLE III.  CNN-LSTM-ATTENTION MODEL PARAMETERS 

 

S. NO Parameters Value 

1 Enter data dimension (20, 29) 

2 Number of convolutional 

layers 

2 

3 Convolution layer output 
dimension 

(20, 64) 

4 Convolution kernel size 3 

5 Pooling layer size GlobalAveragePooling1D() 

GlobalMaxPooling1D() 

6 Number of LSTM layers 1 

7 Number of LSTM units 64 

8 Attention weight 

dimension 

7 

9 Output dimension of the 
FC Layer 

32 

10 Activation function ReLU, Softmax 

 

 

Table IV lists the range of hyperparameters of CNN-

LSTM-Attention model in the training process. Adam was 

selected as the optimization algorithm, and the balance 

between convergence speed and stability was achieved by 

adjusting the learning rate range (1e-6 to 0.0005). Batch size 

increased from 64 to 128 to speed up training; The number of 

training iterations is set to 50 to 100; L2 regularization 

coefficients (0.001 to 0.01) limit model complexity to prevent 

overfitting; The Dropout ratio (0.2 to 0.3) is used to randomly 

drop some neurons to improve the model's generalization 

ability. These hyperparameter Settings ensure model stability 

and performance optimization. 

 
TABLE IV.  MODEL HYPERPARAMETERS 

 

S. NO Hyperparameters Minimum Maximum 

1 Learning rate 1e-6 0.0005 

2 Batch size 64 128 

3 Number of training 

iterations 

50 100 

4 Regularization coefficient 0.001 0.01 

5 Optimization algorithm Adam N/A 

6 Dropout rate 0.2 0.3 

 

 

C. Performance Evaluation 

 

The CNN-LSTM-Attention model demonstrates strong 

generalization and robustness, with accuracy steadily 

improving and stabilizing at 98.4% on the test set and 98.2% 
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on the training set. Simultaneously, the loss values for both sets 

decrease consistently throughout the training process, 

stabilizing around 0.05 as shown in Fig. 6. These results, 

illustrated in the combined accuracy and loss curve, highlight 

the model's balanced fit and effective handling of complex data, 

with regularization techniques mitigating overfitting and 

ensuring reliable performance. 
 

 
 

Fig. 6. Accuracy and Loss Curve of Proposed Model 
 

 

The confusion matrix analysis, Fig. 7, shows that most 

categories are classified accurately, with Class 2 ‘Benign’ and 

Class 9 ‘Worms’ achieving nearly 100% accuracy. However, 

some misclassifications occur, such as Class 3 ‘DoS’ being 

confused with Class 4 ‘Exploits’ and Class 6 ‘Generic’ with 

Class 7 ‘Reconnaissance’, likely due to overlapping feature 

distributions. Larger sample categories, like Class 0 ‘Analysis’ 

and Class 1 ‘Backdoor’ perform better, while smaller 

categories exhibit higher error rates, reflecting the impact of 

class imbalance on model performance. 

 

 
 

Fig. 7. Confusion Matrix 
 

 

As shown in Fig 8, the combined ROC and PR curve 

analysis demonstrates the CNN-LSTM-Attention model's 

exceptional classification performance across all categories. 

With both AUC and average precision (AP) values at 1.00, the 

model shows a remarkable ability to balance high precision and 

recall rates under various thresholds. These results, consistent 

with the confusion matrix and F1 scores, confirm that the 

model achieves near-zero error rates for most categories, 

effectively handling both high-frequency and low-frequency 

classes. The model's robust architecture, integrating CNN for 

feature extraction, LSTM for temporal modeling, and Attention 

for feature weighting, is key to its superior performance and 

generalization in multi-class anomaly detection tasks. 

 

 
 

Fig. 8. ROC and PR Graph of Proposed Model 

 

 

The CNN-LSTM-Attention model demonstrates excellent 

performance in multi-class anomaly detection as shown in 

Table V, achieving 100% accuracy, precision, recall, and F1 

score for the Benign class, and near-perfect F1 scores for 

classes like Analysis (98.81%), Backdoor (98.64%), and 

Shellcode (99.78%). While slightly lower scores are observed 

for DoS (98.33%), Exploits (95.75%), Fuzzers (96.80%), and 

Reconnaissance (97.99%) due to feature complexity and 

overlaps, the model's overall metrics remain high, with an 

average accuracy, precision, recall, and F1 score of 98.44%, 

98.48%, 98.44%, and 98.45%, respectively, showcasing its 

robustness and reliability across diverse categories. 

 
TABLE V.  PROPOSED MODEL MULTI-CLASSIFICATION RESULTS 

  
Accuracy Precision Recall F1-Score 

Analysis 99.21% 98.40% 99.21% 98.81% 

Backdoor 97.94% 99.35% 97.94% 98.64% 

Benign 100.00% 100.00% 100.00% 100.00% 

DoS 96.89% 99.81% 96.89% 98.33% 

Exploits 97.66% 93.91% 97.66% 95.75% 

Fuzzers 98.39% 95.26% 98.39% 96.80% 

Generic 97.26% 99.64% 97.26% 98.43% 

Reconnaissance 97.32% 98.67% 97.32% 97.99% 

Shellcode 99.86% 99.70% 99.86% 99.78% 

Worms 99.87% 100.00% 99.87% 99.93% 

Overall 98.44% 98.48% 98.44% 98.45% 

 

 

D. Comparative Analysis 

 

Table VI shows that the proposed CNN-LSTM-Attention 

model significantly outperforms existing methods across all 

key metrics. Compared to the Transformer-CNN model [30], it 

achieves notable improvements, with accuracy increasing by 

3.08%, precision by 4.33%, recall by 3.08%, and F1 score 

rising from 0.8860 to 0.9845. Against MyCNN [31] and 

mCNN [32] models, the proposed model shows dramatic gains, 

particularly in precision, which improves from 0.4530 and 

0.3570 to 0.9848, underscoring the critical role of the Attention 
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Mechanism in optimizing feature selection and classification 

accuracy. Even when compared to the closely performing 

RandomForest model [33], the proposed model achieves higher 

recall (0.9844) and F1 score (0.9845), demonstrating its robust 

and reliable performance in handling diverse anomaly 

detection tasks. These results highlight the effectiveness of 

integrating CNN, LSTM, and Attention Mechanism for 

advanced intrusion detection. 

 
TABLE VI.  COMPARISON WITH OTHER MODELS 

 

Model Accuracy Precision Recall F1-Score 

Transformer-

CNN [30] 

0.9537 0.8515 0.9537 0.8860 

MyCNN [31] 0.9937 0.4530 0.7710 0.4580 

mCNN [32] 0.9858 0.3570 0.6310 0.3710 

RandomForest 

[33] 

0.9609 0.94 0.95 0.94 

Proposed Model 0.9844 0.9848 0.9844 0.9845 

 

 

V. CONCLUSION 

 

The study presents a comprehensive hybrid model for 

anomaly-based intrusion detection, integrating CNN, LSTM, 

and Attention Mechanisms. By addressing challenges like class 

imbalance, complex attack detection, and high false positive 

rates, experimental results in Section IV demonstrate that the 

proposed CNN-LSTM-Attention model outperforms all 

compared methods, including traditional models like Random 

Forest and deep learning models such as MyCNN, mCNN, and 

Transformer-CNN. It achieved the highest accuracy (98.44%), 

precision (98.48%), recall (98.44%), and F1-score (98.45%), 

confirming its robustness and effectiveness in handling multi-

class anomaly detection tasks. Future directions include 

exploring the model’s scalability for encrypted traffic and its 

deployment in cloud-based environments, paving the way for 

advanced network security solutions. 
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