
International Journal of Innovative Computing 15(1) 81−86

81

Group Project Monitoring System

(TeamWatch)

Anas Ehab Nafei Mohamed1, Marina Md-Arshad2, Adlina Abdul-Samad3*

Faculty of Computing,

Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Malaysia

Email: anasnafei@gmail.com1; marinama@utm.my 2; adlina6@graduate.utm.my 3

Submitted: 22/2/2025. Revised edition: 6/5/2025. Accepted: 15/5/2025. Published online: 27/5/2025
DOI: https://doi.org/10.11113/ijic.v15n1.525

Abstract—Group projects in courses offer a valuable method of

teaching students how to work in a collaborative setting,

mirroring real-world scenarios. However, several challenges

decrease the effectiveness of these projects, including the

presence of free riders, the absence of a robust grading method, a

lack of validation to ensure active participation, and the

prevalence of lone wolves. These issues, if left unaddressed,

degrade the educational benefits of group projects for students.

Manual intervention by lecturers to tackle these challenges isn’t

practical as lecturers have many courses to follow and tracking

each group manually will be difficult to do. Therefore,

TeamWatch proposed web-based system with a desktop agent,

designed to assist students and lecturers in the process of

programming group projects. The development of TeamWatch

employed the waterfall model, providing a structured approach

to ensure efficient and systematic progress. The front-end is built

using Django Templates, while Django served as the back-end

framework. Postgres was employed as the database system, and

Python was utilized for the development of the desktop agent.

TeamWatch offers a range of features aimed at enhancing the

group working experience. Students will be able to track their

working hours in real-time, access the working hours of other

group members, and even log offline working hours. Lecturers

will have comprehensive visibility into each student's working

hours and can generate reports providing valuable insights into

individual performance and participation.

Keywords—Teamwork, Time Tracking, Group Project, Team,

Monitoring

I. INTRODUCTION

Group projects are crucial for students, as they mirror the

collaborative nature of real-world working environment [1].

Universities, including Universiti Teknologi Malaysia (UTM),

have integrated group projects into their curricula to prepare

students for team-based work environments. However,

implementing group projects presents several challenges, such

as fair assessment of individual contributions and equitable

distribution of tasks.

Two significant problems identified are the difficulty in

assessing individual contributions fairly and managing the

uneven distribution of work within groups. Typically, all group

members receive the same grade regardless of their input,

leading to issues with "free riders" who contribute little work

leaving other members with additional work and stress [2].

Additionally, there is the problem of "lone wolves" who

dominate tasks, preventing others from learning effectively and

they also put pressure on the other group members by

neglecting their thoughts and ideas [3]. UTM currently lacks a

standardized approach to address these issues, making it

challenging to ensure fair participation and accurate

assessment.

The proposed solution is a system that monitors individual

contributions to group projects, aiming to identify free riders,

lone wolves, and ensure fair evaluation. This system would

track each student's work, provide data for accurate

assessment, and help lecturers intervene when necessary. The

project is significant as it promotes fairness, accountability, and

enhanced learning outcomes in group settings. The primary

aim is to develop an application that validates and tracks

student contributions, ensuring that all members are actively

engaged and assessed fairly in group projects.

This paper is structured as follows: Section II represents the

literature review followed by the methodology in Section III.

The proposed system was illustrated in Section IV. Besides, the

result analysis was made in Section V. Finally, the conclusion

was made in the last section, Section VI.

Anas Ehab Nafei Mohamed et al. / IJIC Vol. 15 No. 1 (2025) 81−86

82

II. LITERATURE REVIEW

This section includes the case study that’s carried out to

understand and have a clearer view of the issue in hand,

challenges, and other currently available systems.

A. UTM Faculty of Computing Case Study

The Faculty of Computing was chosen because most of the

group projects in the Faculty of Computing are done on a

computer, whether it’s preparing documents or programming a

system.

Group projects at UTM are initiated by lecturers who ask

students to form their own groups or form the groups randomly

for the students. Once groups are formed, students work on the

projects with minimal lecturer supervision. If issues arise

regarding workload distribution, students must manually report

these to lecturers. All group members receive the same grade,

with no differentiation for individual contributions.

To validate the existence of these issues a survey was

conducted within the faculty of computing in UTM. The results

of the survey showed that 70% of the students felt that the

distribution of work among group members was unequal. 85%

mentioned enocunting issues related to lack of commitment

and unequal participations of other members. 70% mentioned

over-reliance on a single member.

B. Current System Analysis

Group projects usually start with students forming their

own groups, working with little oversight from the lecturer.

Issues in work distribution are handled manually by reporting

to the lecturer, and all members receive the same grade

regardless of individual contributions. Some courses include

peer evaluations to provide insights into each member's

participation and some marks are based on that, but these

evaluations vary in detail and effectiveness. For example,

Programming Technique II (SECJ1023) uses a basic form,

whereas Object-Oriented Programming (SECJ2154) uses a

more detailed evaluation form, though both still suffer from

subjective biases and lack a concrete evaluation metric.

In contrast, some courses use time-tracking software like

Clockify and GitHub to monitor individual contributions more

objectively. This method, was used in the application

development course (SECR3104), attempts to quantify work

by tracking hours spent on tasks. However, the effectiveness is

limited by the lack of validation in the software, as students can

log hours without necessarily working, making the data

unreliable.

C. Existing Systems Analysis

To define the essential features for a proposed system and

identify improvement opportunities, comparing it with existing

systems is crucial. Table I shows the analysis of 3 systems that

has a similar idea to the propsed system is provided.

1) Clockify

Clockify is a web-based time tracking tool that offers two

primary methods for tracking time: live time tracking and

offline time addition. Users can record time as they work or

manually input hours after completing tasks. Features include

the ability to assign work hours to specific projects and add

descriptions to clarify the nature of the work. However,

Clockify lacks validation for the online time tracked, any user

can start tracking and go watch YouTube videos or just leave

the computer for few hours and the hours will be logged as

working hours which can lead to unreliable data.

2) Toggl

Toggl, similar to Clockify, provides both live and offline

time tracking options. Users can log time as they work or add it

afterward, with the capability to assign hours to projects and

include detailed descriptions. Despite these functionalities,

Toggl shares Clockify's limitations: it lacks validation for

online time entries.

3) Screenshot Monitor

Screenshot Monitor stands out from Clockify and Toggl by

incorporating validation into its time tracking process. It

operates through a desktop agent that captures screenshots and

measures mouse and keyboard activity, providing visual

evidence and activity metrics for the time tracked. Users can

review work on the web interface, where activities and

associated screenshots are listed. However, Screenshot Monitor

lacks functionality for organizing users into teams or classes,

limiting its utility in the current case. Despite its robust

validation features, it does not support the grouping of

students, which is critical for educational or team-based

projects.

4) Systems Comparsion

Each of the systems analyzed in the pervious section has a

set of strengths and a set of weaknesses, the proposed system

will be developed such that it incorporates the strengths of each

of the systems while mitigating the weaknesses.

TABLE I. COMPARISON OF EXISTING SYSTEMS

Features/

Software
Clockify Toggl

Screenshot

Monitor
TeamWatch

Create

projects
√ √ √ √

Create groups √ √ √

Create
courses

 √

Different
sections for

each course

 √

Set deadline

for project
 √

Tracking
working time

√ √ √ √

Add offline

time
√ √ √ √

Anas Ehab Nafei Mohamed et al. / IJIC Vol. 15 No. 1 (2025) 81−86

83

Features/

Software
Clockify Toggl

Screenshot

Monitor
TeamWatch

Create
projects

√ √ √ √

Take
screenshot

 √ √

Track activity √ √

Produce

report
√ √ √ √

III. METHODOLGY

This chapter outlines the methodology employed in the

development of the system, covering various stages such as

requirements gathering, system design, coding, testing,

implementation, and maintenance. While many methodologies

like the waterfall model, agile, Rapid Application Development

(RAD), and the spiral model exist. The chosen methodology

for this project is the iterative waterfall model, an adaptation of

the traditional waterfall model that permits stage repetition.

Unlike the sequential waterfall model, where each phase must

be completed before moving on to the next, the iterative

version allows revisiting previous stages for improvements.

This flexibility is advantageous for small projects with clear

objectives, where the need for substantial changes is minimal.

The waterfall model's simplicity, clear structure, and extensive

industry use make it suitable for the project's scope, providing

a solid framework for organizing and controlling the

development process. Its limitations, such as rigidity and lack

of feedback, are mitigated by its iterative adaptation, which

addresses these concerns by allowing for ongoing refinement.

Each phase's purpose and execution within the iterative

waterfall model are discussed in detail. Fig. 1 shows the

waterfall model [5].

Fig. 1. Waterfall model [5]

A. Requirements Gathering and Analysis

In the initial phase, the focus is on planning and gathering

user requirements through stakeholder interviews, surveys, and

analysis of existing systems. This process identifies current

system weaknesses and user needs, shaping the system’s

features and project milestones. This phase also involves

extensive research into similar workflows and the development

of a project plan, including Gantt charts to outline timelines

and deliverables. Key outcomes include clear, well-defined

requirements and insights into essential features like live time

tracking and a simple dashboard, as highlighted by user

feedback.

B. System Design

The system design phase transforms gathered requirements

into a detailed design framework, including key system

functions and interfaces. Various diagrams—use case, activity,

class, and sequence—are created to document the system’s

structure and operations. A data dictionary, entity relationship

diagram (ERD), and interface prototypes are also developed,

resulting in a High-Level Design Document that

comprehensively outlines the system’s architecture,

components, and data structures.

C. Implementation

In this phase, the system is coded and developed based on

the design specifications. The project is divided into modules,

each developed and tested individually before integration. The

system comprises a desktop agent and a website, which are

developed separately and then integrated. This phase focuses

on implementing the system's features and functionalities,

aiming to produce a working system that aligns with the design

and requirements.

D. Testing

Testing involves verifying that the integrated system

functions correctly and meets user requirements. After

individual module testing in the implementation phase, the

focus shifts to ensuring the system operates as a cohesive

whole. This phase includes creating and executing test cases,

documenting errors, and addressing issues. Test reports

summarize the testing outcomes, detailing the severity of issues

and resolutions. User Acceptance Tests (UAT) with students

and lecturers ensure the system's reliability and performance.

E. Deployment

Once testing confirms the system’s stability and error-free

operation, deployment begins. This phase involves hosting the

application and deploying the system to end-user devices. In

the traditional waterfall model, deployment includes user

training and ongoing follow-up. The primary objective is to

ensure the system is properly installed and functional, enabling

users to access and utilize its features effectively.

F. Maintenance

The final phase focuses on ongoing maintenance, including

bug tracking, issue resolution, and integrating new features

based on user feedback. It involves setting up feedback

channels and regularly updating the system to address reported

issues and enhance functionality. Although this phase is crucial

for the system’s long-term success, it is not within the scope of

this project.

Anas Ehab Nafei Mohamed et al. / IJIC Vol. 15 No. 1 (2025) 81−86

84

IV. REQUIRMENTS AND DESIGN

This section outlines the design of the system based on the

requirements collected earlier. It covers various design

diagrams such as use case, object-oriented class diagram, and

database description. These diagrams provide a visual

representation of the system's functionality, user interactions,

data structure, and overall architecture. This structured

approach aids in system development, ensuring that each

component and interaction is clearly defined.

Finally, complete content and organizational editing before

formatting. Please take note of the following items when

proofreading spelling and grammar.

A. Use Case Diagram

The use case in Fig. 2 illustrates the interactions between

the system and its primary users: coordinators, lecturers, and

students. It showcases the different functionalities available to

each user group. Coordinators manage courses, add students,

and assign courses to lecturers. Lecturers view and manage

their courses, track student activities, and generate reports.

Students can register, log in, view courses, track and report

their working hours, manage screenshots, and add offline

time. The diagram captures the main functionalities and

interactions within the system, providing an overview of the

user-system interactions and the system's capabilities.

Fig. 2. Use Case Diagram

B. Object Oriernted Class Diagram

The Object-Oriented Programming (OOP) class diagramas

shown in Fig. 3 depicts the structure of the system, including

the main classes and their relationships. The diagram includes

11 classes: User, Coordinator, Lecturer, Student, Group,

Course, Project, Working Hour, Task, Screenshot, and Report.

Each class has attributes and methods relevant to its role in the

system, and the relationships between the classes are clearly

defined, showing how they interact to form the complete

system.

Fig. 3. Class Diagram (OOP)

C. Security Elements

Security is a crucial aspect of the system, focusing on

protecting user credentials, student data, and ensuring secure

communication.

In this system, security was a priority. Encryption and

hashing are used to secure passwords. Passwords are stored as

hashed values, making it difficult for attackers to retrieve them

in case of a data breach. Authentication and access control

mechanisms ensure that only authorized users can access and

manipulate data. Middleware is used to handle requests and

enforce access control. HyperText Transfer Protocol Secure

(HTTPS) is used for secure data transmission between system

components and user devices, protecting against eavesdropping

and data interception. Django Object-Relational Mapping

(ORM) is used to prevent Structured Query Language (SQL)

injection by ensuring proper input validation and parameterized

queries.

D. Network Elements

Network elements are essential for efficient system

operation, focusing on data management and communication.

A cloud database is used for scalability and high availability,

ensuring efficient data storage and retrieval. Multiple

Application Programming Interface (APIs) facilitate seamless

communication between system components (server, database,

client applications), enhancing functionality and providing

real-time data access.

V. RESULT

This section will discuss the achievements of the project.

Anas Ehab Nafei Mohamed et al. / IJIC Vol. 15 No. 1 (2025) 81−86

85

A. Web Application

The web application was successfully developed, the

system maintained a simple modern design that’s efficient and

good looking. All the functions were successful. The web

application is used by the 3 different user types, the coordinator

can use the web application to create and manage courses,

lectures, and students. The lecturers can use the system to view

their courses, create and manage projects and groups, and view

the activity of the students (working hours) with all of their

details including the screenshots and activity levels. Finally, for

the students, they use the system to view their courses,

projects, their other group members and their own activity

(working hours).

The system is full of features that make using the system

easy for the different users, for example, for adding the

students, lecturers or courses, there are options to import from

Excel files. For the reporting module, there are options to

export to Portable Document Format (PDF) or Excel. In the

groups there are buttons to collapse/expand all. Even though

such options aren’t compulsory for the working of the system,

it makes the user experience much better. Fig. 4 displays the

student’s view of group activity, showing working hours and

contributions. Fig. 5 provides the student view of individual

activity, detailing tasks and screenshots; Fig. 6 shows the

student view of screenshots taken during work sessions.

Fig. 4. Student View Group Activity Screen

Fig. 5. Student View Student Activity Page

Fig. 6. Student View Screenshots Page

B. Desktop Agent

The desktop agent is used by the students, it’s a simple

application that allows the student to specify the course,

project, and optionally the task they working on and then start

or stop tracking.

While tracking is active, the system takes screenshots and

identify the running application, and also calculate the activity

of the keyboard and mouse. These data are then sent and stored

at the server. The system also has the feature of stopping the

time tracking if no activity (mouse and keyboard) is detected

for a while. Students are notified of the various events, like

when tracking starts, when inactivity is detected, when a

screenshot is taken, and when tracking is stopped. Fig. 7

depicts the desktop agent interface for real-time time tracking

and activity monitoring.

Fig. 7. Desktop Time Tracking Screen

C. User Acceptance Tests

Both the web application and the desktop application went

through the user acceptance tests and received generally good

feedback as shown in Table II. Some requested improvements

were setting the frequency of screenshots manually and being

able to set configuration settings by mouse and keyboard use of

activity levels – all these will be taken into account if as

suggestions for future improvements. One mentioned feature

that was added in this version of the system was validation on

project deadlines: a student cannot add working hours on a

project whose due date has already passed. For the desktop

Anas Ehab Nafei Mohamed et al. / IJIC Vol. 15 No. 1 (2025) 81−86

86

application, the feedback was also quite good, the students had

a few suggestions. For instance, auto-start and background

operation are some of the features mentioned by the testers.

These are considered complementary, and will be considered

as recommendations for future versions.

TABLE II. USER ACCEPTANCE TEST BASED ON ACTOR

Actor: Lecturer

Related

Module
Requirements Comments Result

Manage
Project

• Be able to

view projects
for each

course.

• Be able to edit

projects.

• Be able to

delete a

project.

Students should

be able to track
for projects that

the deadline of

has passed

already.

Success

View

Activity

Per Course

• Be able to

view detailed

activity for a
course .

• Be able to edit

an activity.

• Be able to

view the
screenshots

associated with

an activity.

• Be able to blur

a screenshot.

• Be able to

delete a

screenshot.

Can add an option

for lecturers to
change the

frequency of the

taken screenshots
and adjust the

activity levels

calculations
(Keyboard and

Mouse required

clicks to be
considered 100

percent active).

Success

View

Activity

Using
Reports

• Be able apply

filters.

• Be able to

group by the
results to

either students
or groups.

• Be able to

export to PDF.

• Be able to

export to
Excel.

Enhancements on
the design can be

made.

Success

Actor: Student

Related

Module
Requirements Comments Result

Tracking

Working

Time Using
Desktop

Agent

• Be able to

select the

course

• Be able to

select a project

• Be able to

select a task.

• Be able to start

tracking.

• Be able to stop

tracking.

• Can add an

option to set
the

application

to start
automaticall

y

• Can add an

option to let

the program
run in the

background

Success

VI. CONCLUSION

The TeamWatch system has been successfully developed to

meet its objectives and within the appropriate scope.

TeamWatch effectively mitigates common issues in group

projects such as free riding, unequal work distribution, lone

wolves, and lack of participation tracking. The system

combines a web-based platform and a desktop agent, enabling

seamless tracking of individual contributions and working

hours. The information is stored in a cloud database, accessible

to lecturers and students through a Django-based application.

To evaluate the system’s accuracy and functionality, user

testing was conducted with students and lecturers. Feedback

confirmed that TeamWatch functions as intended, with

suggestions for future enhancements. Future improvements

could include integration with other systems like Github or Jira

or e-learning and expanding reporting capabilities for better

insights.

ACKNOWLEDGMENT

The authors wish to thank everyone who provided their

insights and advice for this system whether students or

lecturers.

CONFLICTS OF INTEREST

The author(s) declare(s) that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] Jun, H. (2010). Improving Undergraduates’ Teamwork Skills

by Adapting Project-based Learning Methodology. 2010 5th

International Conference on Computer Science & Education.

Doi:10.1109/iccse.2010.5593527

[2] Gitinabard, N., Okoilu, R., Xu, Y., Heckman, S., Barnes, T.,

& Lynch, C. F. (2020). Student Teamwork on Programming

Projects. What Can Github Logs Show Us. Educational Data

Mining. http://files.eric.ed.gov/fulltext/ED608053.pdf.

[3] Barr, T. F., Dixon, A. L., & Gassenheimer, J. B. (2005).

Exploring the “Lone Wolf” Phenomenon in Student Teams.

Journal of Marketing Education, 27(1), 81–90.

Doi:10.1177/0273475304273459

[4] Feichtner, S. B., & Davis, E. A. (1984). Why Some Groups

Fail: A Survey of Students’ Experiences with Learning

Groups. Journal of Management Education, 9(4), 58–73.

Doi:10.1177/105256298400900409

[5] Tutorialspoint. (2019). SDLC Waterfall Model.

Www.tutorialspoint.com.

https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.ht

m.

