
International Journal of Innovative Computing 15(2) 149−158 
 

 
 

149 

 

Recent Trends on Multi-omics Studies in Cancer 

Research: A Bibliometric Study 

Nur Sabrina Azmi1,2* & Weng Howe Chan2 

1Faculty of Computing, Universiti Teknologi Malaysia, 

81310 UTM Johor Bahru, Johor, Malaysia 
2UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 

81310 UTM Johor Bahru, Johor, Malaysia 

Email: nsabrina36@graduate.utm.my1*, cwenghowe@utm.my2 

 

Submitted: 6/3/2025. Revised edition: 30/7/2025. Accepted: 12/8/2025. Published online: 30/11/2025 

DOI: https://doi.org/10.11113/ijic.v15n2.540 

 

 
Abstract—The integration of multi-omics approaches has 

revolutionized cancer research by providing a comprehensive 

understanding of cancer pathogenesis beyond single-omics 

methods. By combining diverse omics data types, multi-omics 

analyses improve precision in identifying intricate disease-related 

mechanisms. Despite increasing interest, bibliometric analyses on 

multi-omics research in oncology remain limited. This study 

addresses this gap by conducting a bibliometric analysis of multi-

omics cancer research trends over the past six years (2019 to 

February 2025), utilizing data from the Web of Science Core 

Collection (WoSCC) accessed on 28 February 2025, and analysing 

it with VOSviewer. The analysis of 3386 publications indexed in 

WoSCC reveals a significant surge in multi-omics research. China 

leads with 2055 publications, while the University of Toronto in 

Canada and the Institut National de la Santé et de la Recherche 

Médicale (Inserm) in France emerge as major contributors, each 

accounting for more than 50% of their country's total publications 

in this domain. Dominant keywords such as multi-omics, 

prognosis, immunotherapy, machine learning and tumor 

microenvironment highlight current research priorities. This 

study provides a comprehensive overview of publication trends, 

offering valuable insights to guide future research in multi-omics 

cancer studies. By highlighting major contributors and emerging 

focal points, this study aspires to foster advancements and inspire 

future exploration in this pivotal domain. 

 

Keywords—Multi-omics, Bibliometric analysis, VOSviewer, 

Computational biology 

 

I. INTRODUCTION 

 

The complexity of biological systems has posed a significant 

challenge for researchers seeking a holistic understanding of 

human health. Additionally, the transformation of normal cells 

into cancerous cells introduces complex behaviors that require 

study. To comprehend how cancer hallmarks are acquired, it is 

essential to investigate the underlying mechanisms of cancer 

cells by employing multiple sources of information. In 

biological studies, ‘omics’ or ‘omes’ refer to comprehensive 

fields of study related to specific biological molecules within an 

organism. Examples include genomics, epigenomics, 

proteomics, metabolomics, and transcriptomics. The distinct 

characterization of each omics layer provides valuable insights 

and correlations to diseases. The inception of omics studies can 

be attributed to the success of the Human Genome Project, 

which enabled the recognition of disease causes through 

sequencing and analysing human genomes [1]. With the rapid 

development of high-throughput technologies, also known as 

next-generation sequencing, an extensive amount of omics data 

is being produced at an accelerated volume and in a cost-

effective manner. The accumulation of available omics data and 

clinical information offers significant opportunities for cancer 

research, including disease subtyping [2-4], biomarker 

discovery [5, 6], survival analysis [7, 8], subtypes prediction [9, 

10], and more. 

Previously, single-omics studies analysed disease causality 

and screening methods to improve patient treatment. Single-

omics approaches primarily quantify molecular changes at the 

tissue level but overlook system-wide interactions across 

multiple omics layers within the cellular microenvironment, 

limiting their ability to unravel the complexity of cancer [9]. 

However, it is now evident that the single-omics approach 

disregards the molecular interactions across multiple omics 

layers and fails to unravel the complexity of cancer. As a result, 

single-omics studies often yield suboptimal prognostic insights 

due to the exclusion of cross-omics molecular interactions. 

Therefore, multi-omics analysis provides a more comprehensive 



Nur Sabrina Azmi & Weng Howe Chan / IJIC Vol. 15 No. 2 (2025) 149−158 

 

150 

 

understanding of a given phenotype [11]. Consequently, 

researchers have made significant efforts to design robust and 

reliable computational models for improving multi-omics data 

analysis in clinical settings. For instance, one study prioritized 

driver genes in colon and rectal cancers by integrating 

proteomic, genomic and transcriptomic data [12]. 

According to studies, integrated omics offer the opportunity 

to understand the flow of information underlying diseases, 

compared to single-omics analysis [9]. In multi-omics, there is 

no straightforward one-to-one relationship between the 

correlation of cancer genotypes and phenotype instead, it 

involves a complex network of interactions in biological events 

[13]. Unlike multi-omics analysis, single-omics studies limit the 

observation of the whole molecular biological interaction in 

underlying diseases, resulting in unreliable and inaccurate 

pathogenesis information. The interrelation between omics and 

conditions in multi-omics provides more insights, such as 

biological pathways or different processes between the disease 

and control groups [9, 14]. Consequently, multi-omics has been 

increasingly applied in cancer research to support treatment 

decision-making [15]. With its ability to provide a deeper 

understanding of disease mechanisms and individual variability 

in treatment response, multi-omics holds great promise for 

advancing precision medicine and improving patient outcomes. 

The utilization of multi-omics analysis has resulted in a 

significant rise in the number of research publications. 

Bibliometric analysis is a systematic and comprehensive 

research approach utilizing quantitative and qualitative methods 

[16] to evaluate academic publications. This methodology has 

been widely employed since the late 1800s and early 1900s [17] 

and has become integral to scholarly research and evaluation. 

Presently, it is often used to analyse and visualize accumulated 

scientific knowledge, evaluate the influence of a group of 

scholars, and extract dominant research topics [18-21]. 

However, comprehensive bibliometric analyses that capture 

overarching trends in multi-omics cancer research across 

various cancer types are scarce. To fill this gap, our study 

conducts a broad bibliometric analysis over the past six years 

(2019 to 2025), using the WoSCC database to map publication 

trends, identify leading contributors, and highlight emerging 

research themes in multi-omics cancer studies. This work aims 

to provide researchers with a holistic understanding of the 

evolving landscape, thereby guiding future investigations and 

collaborations in this rapidly expanding field. We conducted all 

searches on the same day (28 February 2025) to prevent bias due 

to daily updates to the database. 

By examining research trends over these years, this study 

provides a timely overview of the evolving landscape of multi-

omics research in cancer. Understanding these trends can serve 

as a guide for researchers by highlighting emerging topics, 

influential contributors and key publication venues. 

Additionally, this analysis may motivate researchers to explore 

new directions in multi-omics studies, fostering further 

advancements in this domain. Our study aims to provide 

valuable insights through the growth of publications, landmark 

articles, top keywords, country and institution contributions. 

This work will serve as a resource for researchers, particularly 

those new to multi-omics studies, to navigate and expand their 

understanding of this evolving field. 

II. METHODS 

 

A. Data Source and Search Strategy 

 

The paper selection process used in this study is divided into 

three phases, as illustrated in Fig. 1 and inspired by the approach 

detailed in [22]. The UTM EZProxy of Universiti Teknologi 

Malaysia (UTM) Library provides access to WoSCC 

(https://library.utm.my/). The bibliometric analysis focuses on 

the publications from WoSCC, which were refined from 2019 to 

2025 (February). The Topic search field is used in the option of 

the WoSCC searching tool, which queries on the title, abstract, 

author keywords and Keywords Plus within a record instead of 

focusing on specific searches using the Topic search field results 

in a more efficient search, as it broadens the scope to include all 

relevant records. The Boolean search string (‘multi-omic’ OR 

‘multi-omics’) AND (‘cancer’ OR ‘cancers’) was used. To avoid 

duplicate records arising from overlap between ‘multi-omic’ and 

‘multi-omics’, we applied a NOT operator to exclude redundant 

articles that appeared in both search terms. 

 

 
 

Fig. 1. Flowchart of the three-phase paper selection process for bibliometric 

analysis of multi-omics cancer research publications from 2019 to February 
2025 

 

 

In this study, we use the keyword search string multi-omic 

and multi-omics. However, these two keywords have different 

numbers of articles. Therefore, to eliminate the duplication of 

articles between these keywords, the NOT operator removes 

redundant articles that refer to the AND operator. Then, after 

removing the duplication articles, the search is restricted to 

cancer OR cancers articles only (using AND operator). We 

conducted all searches on 28 February 2025 to prevent bias 

caused by daily updates to the database. The six-year period, 

including 2025, aims only to observe the current trends of multi-
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omics studies. The search focuses on the English language and 

the document of research articles only. After thoroughly 

reviewing 4454 records, we excluded 1068 records as they failed 

to meet the study criteria. Consequently, we have shortlisted 

3386 records that satisfy our bibliometric study requirements. 

 

B. Data Analysis 

 

The bibliometric analysis was conducted using VOSviewer. 

VOSviewer was selected as the primary tool for this 

bibliometric analysis due to its specialized capabilities in 

constructing and visualizing bibliometric networks such as co-

authorship and keyword co-occurrence maps. It offers an 

intuitive user interface and efficiently handles large datasets, 

producing clear, high-quality visualizations that facilitate 

interpretation of complex relationships in scientific 

publications. Compared to other tools like CiteSpace, which 

focuses more on detecting emerging trends and citation bursts, 

VOSviewer provides a straightforward approach well-suited for 

mapping collaboration patterns and research themes, aligning 

closely with the objectives of our study. Additionally, NVivo, 

while powerful for qualitative data analysis, is less optimized 

for quantitative bibliometric mapping. Therefore, VOSviewer 

was deemed the most appropriate tool to comprehensively 

explore publication trends and collaboration networks in multi-

omics cancer research. 

We utilized the Analyze Results feature in the Web of 

Science database to examine and visualize the 3386 shortlisted 

records. We then exported the selected records in Plain Text 

File format, including full records based on the topic, scope and 

eligibility criteria of the study. Due to system limitations, we 

exported the records in batches of 500 per instance. We 

performed bibliometric network analysis using VOSviewer, a 

specialized tool for constructing and visualizing co-authorship 

and keyword co-occurrence networks. VOSviewer is a 

specialized tool for generating and visualizing bibliometric 

maps [23, 24]. The analysis types used in this study are co-

authorship and co-occurrence.  

We set a threshold to limit a maximum of 25 authors, 

organizations, and countries per document. This value was 

selected based on common bibliometric practices and 

preliminary data exploration, balancing the inclusion of most 

multi-authored publications while excluding outlier consortium 

papers that could disproportionately influence the network 

structure. This filtering approach helped maintain readability 

and the interpretability of collaboration and keyword maps. 

 

C. Bibliometric Analysis and Network Visualization 

 

Bibliometric network analyses were conducted using 

VOSviewer (version 1.6.20) to visualize collaboration patterns 

and thematic structures within the multi-omics cancer research 

literature. To ensure clarity and meaningful interpretation of the 

networks, specific parameter thresholds and settings were 

applied as follows: 

• Minimum Document and Citation Thresholds: For 

country- and institution-level co-authorship networks 

(Figs. 3 and 4), a minimum threshold of five documents 

and five citations per entity was set. This filtering excluded 

sporadic contributors with limited research output or 

impact, thereby reducing noise and enhancing the 

robustness of the collaboration maps. 

• Clustering Method: Node clustering was performed using 

VOSviewer’s built-in modularity-based algorithm, which 

groups nodes based on the strength of their connections. 

Nodes within the same cluster represent countries, 

institutions, or keywords that frequently collaborate or co-

occur, with distinct colors assigned to each cluster to 

highlight closely related groups. 

• Density Visualization Settings: For keyword co-

occurrence analysis (Fig. 5), density visualization was 

generated using VOSviewer’s kernel density estimation 

with default bandwidth parameters. In these maps, node 

size corresponds to keyword frequency, while color 

intensity reflects the local density of keyword co-

occurrence, emphasizing dominant research themes. 

• Limits on Contributors per Publication: To prevent 

distortion caused by publications with exceptionally large 

author lists or multiple affiliations (e.g., consortium 

studies), a maximum limit of 25 authors, organizations, and 

countries per document was imposed during data 

processing. This constraint helps maintain the readability 

and structural balance of the network visualizations by 

mitigating overrepresentation from a few large 

collaborations. 

• Keyword Occurrence Thresholds: For keyword co-

occurrence analysis, a minimum occurrence threshold of 

10 was applied to filter terms, ensuring only keywords with 

sufficient frequency were included to generate meaningful 

networks. This threshold resulted in 506 keywords meeting 

the criteria for analysis. 

These parameter choices were guided by standard 

bibliometric practice and informed by preliminary data 

exploration to balance inclusiveness with visualization clarity. 

The thresholds and settings applied enabled robust, 

interpretable network maps that accurately reflect collaboration 

patterns and thematic structures within multi-omics cancer 

research. 

 

III. RESULTS 

 

A. Quantitative Analysis of Publication Trend 

 

The bibliometric dataset analysed in this study consists of 

3386 research articles. Table I provides a summary of the annual 

publication and citation counts from 2019 to 2025, while Fig. 2 

illustrates the annual distribution of publications and citations in 

multi-omics cancer research from 2019 to early 2025. The bar 

chart (light purple) represents the number of publications per 

year, and the line graph (dark blue) represents the corresponding 

citation counts. 
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TABLE I.  ANNUAL PUBLICATION AND CITATION COUNTS FOR 

MULTI-OMICS CANCER RESEARCH ARTICLES INDEXED IN THE WEB 

OF SCIENCE CORE COLLECTION FROM 2019 TO EARLY 2025. THE 

TABLE PRESENTS RAW COUNTS AND HIGHLIGHTS YEAR-OVER-
YEAR PERCENTAGE CHANGES TO ILLUSTRATE GROWTH TRENDS. 

Year Publications 
% Change in 

Publications 
Citations 

% Change in 

Citations 

2019 155 — 153 — 

2020 288 + 85.2% 1309 + 756.2% 

2021 469 + 62.8% 4082 + 211.9% 

2022 658 + 40.3% 7762 + 90.1% 

2023 696 + 5.8% 11457 + 47.6% 

2024 971 + 39.5% 16810 + 46.8% 

2025* 152 — 2784 — 

 

 

Based on Fig. 2, an upward trend in publication volume is 

evident from 2019 onwards, reaching its peak in 2024. A similar 

pattern is observed for citations, which also peak in 2024 before 

declining in early 2025. The lower figures for 2025 are likely 

due to incomplete data since the counts represent partial-year 

values up to February, and citations typically accumulate over 

time. Over the past six years, multi-omics cancer research 

publications have received an average of 5545.63 citations 

annually, amounting to a total of 44365 citations. 

The annual publication volume from 2019 to 2021 exhibits 

steady and consistent growth, reflecting intensified research 

efforts, potentially influenced by the COVID-19 pandemic [25-

27]. Factors contributing to this trend include increased funding 

opportunities in biomedical research and expedited publication 

processes during this period. This sustained growth underscores 

the rising importance and urgency attributed to multi-omics 

cancer research in recent years. 

 

 
Fig. 2. Annual publication and citation trends in multi-omics cancer research 
from 2019 through early 2025. Publication and citation counts for 2025 

represent partial data collected up to February and should be interpreted with 

caution 
 

 

The relatively slower growth observed between 2022 and 

2023 may be attributed to several factors. The initial rapid 

increase in publications during earlier years was likely driven 

by heightened urgency and increased funding related to the 

COVID-19 pandemic, which accelerated biomedical research 

broadly. By 2022, this surge stabilized as research priorities 

adjusted, and some pandemic-related funding and expedited 

publication mechanisms normalized. Additionally, the 

complexity and longer timelines inherent to multi-omics studies 

may have contributed to a more measured pace of publication 

growth. Furthermore, global challenges such as supply chain 

disruptions, workforce shortages, and shifting funding 

landscapes during the post-pandemic period could have 

temporarily impacted research productivity. Despite this slower 

incremental growth, the overall trend remains upward, 

reflecting sustained interest and investment in multi-omics 

approaches in cancer research. 

From 2023 onwards, the trend of publication rates resumed 

a steeper increase, possibly driven by advancements in 

computational methodologies, greater availability of multi-

omics datasets, and improved analytical tools facilitating large-

scale integrative analyses. Overall, these trends underscore the 

increasing significance of multi-omics approaches in cancer 

research and the evolving landscape of scientific contributions 

in this field. 

To further elucidate the publication and citation dynamics 

over the study period, we calculated the year-over-year 

percentage changes (Table I). From 2019 to 2020, publications 

increased sharply by approximately 85.2%, while citations 

surged by over 750%, reflecting a rapid expansion in multi-

omics cancer research interest and impact. Subsequent years 

showed positive but more moderate growth rates. For example, 

publication growth slowed to 5.8% between 2022 and 2023, 

and citations increased by around 47.6% during the same 

interval. The early 2025 data represent only partial-year counts 

and thus show lower numbers, which should be interpreted with 

caution. These trends highlight both an initial surge, likely 

influenced by factors such as increased funding and expedited 

publishing during the COVID-19 pandemic, and sustained 

growth driven by ongoing advancements in multi-omics 

methodologies and data availability. 
 

B. Collaborative Efforts in the Analysis of Countries and 

Institutions 
 

Bibliometric data show that 3954 institutions from 86 

countries have contributed to multi-omics cancer research. 

Table II summarizes the top ten countries ranked by publication 

output, along with their citation counts and leading institutions. 

The top three countries, namely China, the United States, 

and Germany, dominate this research area. China leads with 

2055 publications, representing 60.7 percent of the total output, 

and holds the highest citation count at 21841. The United States 

follows with 794 publications, accounting for 23.5 percent, and 

17793 citations, while Germany ranks third with 187 

publications, representing 5.5 percent, and 3766 citations. This 

concentration reflects significant research capacity and 

investment in multi-omics cancer studies by these nations. 

Leading Chinese institutions include the Chinese Academy 

of Sciences with 156 publications, Fudan University with 145 

publications, Shanghai Jiao Tong University with 142 

publications, Sun Yat-Sen University with 141 publications, and 

the Chinese Academy of Medical Sciences and Peking Union 

Medical College with 107 publications. These five institutions 

alone contribute substantially to Chinas dominant position. 

In the United States, Harvard University leads with 102 

publications, while in Germany the Helmholtz Association 

contributes 72 publications. These institutions play pivotal roles 

in driving their countries research outputs. Beyond the top three, 
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other countries such as the United Kingdom, Canada, Italy, 

India, South Korea, Australia, and France also contribute 

notably to multi-omics cancer research. The University of 

London with 39 publications and the University of Toronto with 

57 publications emerge as key institutions in the United 

Kingdom and Canada respectively. The University of Toronto 

and Inserm in France, each with 48 publications, account for 

about half of their countries’ total research output, highlighting 

their importance as national research hubs. 

While publication rankings generally align with citation 

counts, some differences highlight variations in research impact. 

For example, France, despite fewer publications than Canada, 

has garnered more citations, suggesting higher average 

influence or visibility in the field. These findings reveal a 

research landscape concentrated among a few leading countries 

and institutions but also underscore opportunities for broader 

international collaboration. 

TABLE II.  TOP TEN COUNTRIES RANKED BY PUBLICATION OUTPUT 

IN MULTI-OMICS CANCER RESEARCH, INCLUDING 

CORRESPONDING CITATION COUNTS AND THE CONTRIBUTION OF 

LEADING INSTITUTIONS EXPRESSED AS PERCENTAGES OF THEIR 

COUNTRY'S TOTAL PUBLICATIONS. 

Rank Country Count Citation Institution Count 

1 China 
2055 

(60.7%) 
21841 

Chinese 

Academy of 

Sciences 

156 

(7.6%) 

2 
United 

States 

794 

(23.5%) 
17793 

Harvard 

University 

102 

(12.9%) 

3 Germany 
187 

(5.5%) 
3766 

Helmholtz 

Association 

72 

(38.5%) 

4 
United 

Kingdom 

146  

(4.3%) 
3614 

University of 

London 

39 

(26.7%) 

5 Canada 
114 

(3.4%) 
2859 

University of 

Toronto 

57 

(50.0%) 

6 Italy 
108  

(3.2%) 
1873 

Consiglio 

Nazionale 

delle 

Ricerche 

(CNR) 

12 

(11.1%) 

7 India 
99 

(2.9%) 
728 

Indian 

Institute of 

Technology 

System  

16 

(16.2%) 

8 
South 

Korea 

96 

(2.8%) 
1099 

Seoul 

National 

University 

39 

(40.6%) 

9 Australia 
92 

(2.7%) 
2222 

University of 

Queensland 

22 

(23.9%) 

10 France 
89 

(2.6%) 
3089 

Institut 

National De 

La Sante Et 

De La 

Recherche 

Medicale 

Inserm 

48 

(53.9%) 

 
 

The total link strength metric captures the extent of 

international collaboration. Fig. 3 highlights this measure for 

countries and Fig. 4 displays the same for institutions. For Fig. 

3, we applied a threshold requiring a minimum of five 

documents and citations per country. Out of 86 countries, 53 met 

this threshold, resulting in 53 nodes in Fig. 3, each representing 

a country. Based on this analysis, United States, China, 

Germany and United Kingdom exhibit denser and more 

extensive connections with other nodes on the map, indicating 

strong international collaboration worldwide. 

Fig. 3 illustrates six clusters of countries based on total link 

strength in co-authorship networks. Nodes represent individual 

countries, while edges denote collaborative publication 

relationships. For instance, if researchers from two countries 

have co-authored a publication, a link is created between those 

two countries. The size of each node corresponds to the number 

of publications, with China having the largest node due to its 

highest publication count, followed by the United States, 

Germany and United Kingdom. Consequently, the China node 

is the most prominent in the map, as the node weight in this 

analysis is based on the number of publications. 
 

 
Fig. 3. Co-authorship network map of countries involved in multi-omics cancer 

research based on a minimum of five documents and citations. The size of each 

node represents the number of publications, the thickness of connections 

indicates collaboration strength, and different colors represent clusters of 
frequently collaborating countries 

 

 

For Fig. 4, institutions were required to have at least five 

documents and citations to be included on the map. Out of 3954 

institutions, 434 met this threshold. Fig. 4 displays nine clusters 

of institutions with the strongest co-authorship links. The nodes 

on the map represent institutions and the links represent co-

authorship relationships. A link is created when researchers 

from two institutions have co-authored a publication. Among the 

clusters, Cluster 1 (indicated by red nodes), Cluster 2 

(represented by green nodes), and Cluster 3 (highlighted by blue 

nodes) are the most prominent on the map. The size of the nodes 
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in Fig. 4 corresponds to the total link strength of the institutions. 

As a result, institutions with higher total link strength have more 

prominent node labels. Notable examples include Shanghai Jiao 

Tong University, Chinese Academy of Sciences, Fudan 

University, Harvard Medical School and Sun Yat-Sen 

University, which are among the most significant nodes on the 

map. 

 

C. Landmark Articles 

 

Out of 3386 articles, we retrieved ten highly cited papers 

from WoSCC, as presented in Table III. The most cited paper, 

with 819 citations, was authored by Yachida et al. and focused 

on ‘Metagenomic and metabolomic analyses reveal distinct 

stage-specific phenotypes of the gut microbiota in colorectal 

cancer’ [28]. Based on publications from 2019 to 2025, the top 

ten landmark articles in multi-omics studies have addressed 

various types of cancer, including colorectal, breast, 

hepatocellular carcinoma, ovarian, lung adenocarcinoma, renal 

cancer and endometrial carcinoma.  
 

 
Fig. 4. Network map showing institutional co-authorship in multi-omics cancer 
research with a threshold of at least five documents and citations. Node sizes 

correspond to collaborative activity levels, links indicate co-authorship 

relationships, and colors denote clusters of closely collaborating institutions. 
 

 

The study of gut microbiome has become increasingly 

popular in recent times and this is proven by the two articles 

related to the gut microbiome garnered the highest citations. It 

has been researched on a range of health conditions, including 

obesity, diabetes, liver diseases, cancer and neurodegenerative 

disorders. This indicates that gut microbiome study extends 

beyond cardiovascular disease [29]. According to Li et al. [30], 

much scientific research has been dedicated to the gut 

microbiome in the past two decades. There are over 50000 

research articles on this topic in the WoSCC alone, with a 

consistent increase in publications over time. Thus, the gut 

microbiome is a subject of great interest in scientific research. 

The scientific community is highly interested in the microbiome 

and it has also captured the attention of the public and 

businesses, which is evident from its press coverage [31]. 

Support from governments and international organizations, 

particularly in financial aid, has been instrumental in the growth 

of this research field. For example, the United States National 

Institutes of Health (NIH) invested $216 million in the Human 

Microbiome Project in 2016 [30]. 

Two of the most highly cited landmark articles in our dataset 

focus on the gut microbiome, underscoring its emerging 

significance within multi-omics cancer research. The gut 

microbiome represents a complex and dynamic ecosystem that 

influences cancer pathogenesis, treatment response, and patient 

outcomes through intricate molecular interactions. Multi-omics 

approaches enable comprehensive characterization of microbial 

communities alongside host genomics, transcriptomics, 

metabolomics, and proteomics, providing deeper insights into 

these interactions. 

The prominence of gut microbiome studies highlights how 

integrative multi-omics analyses are advancing our 

understanding of cancer biology beyond traditional single-omics 

methods. This integrative perspective facilitates identification of 

novel biomarkers and therapeutic targets, particularly in cancers 

such as colorectal carcinoma, where microbial dysbiosis plays a 

critical role. The high citation impact of these studies reflects 

growing research interest and the translational potential of 

microbiome-focused multi-omics investigations in oncology. 

 

D. Keywords 

 

To analyse keywords in bibliometric data, co-occurrence 

analysis was applied to all keyword units. A total of 9751 

keywords were identified, out of which only 506 keywords met 

the minimum threshold of having at least 10 occurrences. Fig. 5 

displays the density visualization of the keyword analysis, where 

eight clusters were identified. The most significant node in the 

map represents the keyword with the highest occurrence. Nodes 

in the map represent total link strength, and their size 

corresponds to the frequency of keyword usage. From Fig. 5, 

keywords such as expression, cancer, multi-omics and prognosis 

appear in a larger font size compared to other keywords, 

indicating that they are the most frequently used terms in the 

research articles. The keyword expression is part of Cluster 1 

(represented by green nodes), while immunotherapy and 

prognosis belong to Cluster 2 (represented by red nodes). 

A total of 5853 author keywords were identified, of which 

169 keywords met the minimum threshold of at least 10 

occurrences each. Fig. 6 presents the overlay visualization of 

the co-occurrence analysis for author keyword units, revealing 

seven distinct clusters. The most prominent node in the map 

represents keywords with the highest occurrence across all 

records, including multi-omics (533 occurrences), prognosis 

(300 occurrences), immunotherapy (277 occurrences), machine 

learning (166 occurrences) and tumor microenvironment (146 

occurrences). The node colors correspond to the average 

citation values, with Cluster 1 (indicated by yellow nodes) 

receiving the highest citations. This cluster highlights the 

application of computational methods and interdisciplinary 

approaches in multi-omics research, encompassing keywords 

such as artificial intelligence, machine learning, deep learning, 

feature selection, autoencoders, cancer subtype classification, 

survival analysis, and others. 
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In addition, a total of 4731 KeyWords Plus were identified, 

of which 330 keywords met the minimum threshold of at least 

10 occurrences each. The top five KeyWords Plus, based on 

their frequency, include expression (828 occurrences), cancer 

(741 occurrences), cells (322 occurrences), survival (241 

occurrences), and identification (228 occurrences). These high-

frequency keywords reflect the dominant themes and focus areas 

within the dataset, particularly in fields such as oncology, 

molecular biology and biomedical research. 

 
TABLE III.  THE TEN MOST HIGHLY CITED LANDMARK ARTICLES IN 

MULTI-OMICS CANCER RESEARCH PUBLISHED BETWEEN 2019 AND 

EARLY 2025, LISTING FIRST AUTHOR, YEAR, JOURNAL, AND 

CITATION COUNT 
 

Rank Title 
First 

author 
Year Journal 

Citati

on 
Ref. 

1 Metagenomic 

and metabolomic 

analyses reveal 

distinct stage-
specific 

phenotypes of 

the gut 

microbiota in 

colorectal cancer 

Yachid

a, S 

2019 Nature 

Medicine 

819 [28] 

2 A single-cell and 

spatially resolved 

atlas of human 

breast cancers 

Wu, SZ 2021 

 

Nature 

Genetics 

663 

 
[32] 

3 IOBR: Multi-
Omics Immuno-

Oncology 

Biological 

Research to 

Decode Tumor 

Microenvironme

nt and Signatures 

Zeng, 

DQ 

2021 
 

Frontiers in 

Immunology 

596 
 

[33] 

4 Integrated 

Proteogenomic 

Characterization 

of HBV-Related 

Hepatocellular 

Carcinoma 

Gao, Q 2019 Cell 589 [34] 

5 Interaction 

between drugs 

and the gut 

microbiome 

Weers

ma, RK 

2020 

 

Gut 

 

506 

 

[35] 

6 The m6A reader 

YTHDF1 

promotes ovarian 

cancer 

progression via 

augmenting 
EIF3C 

translation 

Liu, T 2020 

 

Nucleic 

Acids 

Research 

485 [36] 

7 Proteogenomic 

Characterization 

Reveals 
Therapeutic 

Vulnerabilities in 

Lung 

Adenocarcinoma 

Gillette, 

MA 

2020 

 

Cell 

 

438 

 

[37] 

8 High-Spatial-
Resolution 

Multi-Omics 

Sequencing via 

Deterministic 

Barcoding in 

Tissue 

Liu, Y 2020 
 

Cell 
 

436 
 

[38] 

9 Molecular 

Subsets in Renal 

Cancer 

Determine 

Motzer, 

RJ 

2020 Cancer Cell 317 [39] 

Rank Title 
First 

author 
Year Journal 

Citati

on 
Ref. 

Outcome to 

Checkpoint and 

Angiogenesis 

Blockade 

10 Proteogenomic 

Characterization 

of Endometrial 

Carcinoma 

Dou, 

YC 
2020 Cell 283 [40] 

 

 

Fig. 7 presents the network visualization of the co-occurrence 

analysis for all KeyWords Plus units, revealing seven distinct 

clusters within the map. Each cluster represents a group of 

closely related keywords, indicating thematic subdomains or 

research trends. For instance, Cluster 1 emphasizes molecular 

and cellular mechanisms, featuring keywords such as antibody, 

B-cell and pathogenesis, while Cluster 2 focuses on molecular 

biology, including terms like glycolysis, hypoxia and 

degradation. The visualization highlights not only the frequency 

of keyword co-occurrence but also the interconnectedness of 

research topics, providing insights into the structure and 

evolution of the field. 

 

 
 
Fig. 5. Density visualization of keyword co-occurrence in multi-omics cancer 

research publications. Node size reflects keyword frequency, and warmer 

colors indicate areas with higher densities of co-occurring keywords, 

highlighting dominant research themes. 
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Fig. 6. Overlay visualization of author keyword co-occurrence in multi-omics 
cancer research. Node size indicates frequency of keyword usage, while node 

color represents average citation impact, thereby identifying influential 

research topics. 
 

 
Fig. 7 Network visualization of KeyWords Plus co-occurrence analysis 

depicting thematic clusters within multi-omics cancer research. Nodes are sized 
by keyword frequency, edges represent co-occurrence links, and colors 

distinguish thematic groups. 

 

 

The size and color of nodes in the network correspond to the 

frequency and impact of the keywords, respectively, allowing 

for a clear interpretation of their significance. Keywords with 

larger nodes indicate higher occurrences, while smaller nodes 

represent less prominent terms. This layered representation 

enables the identification of both established and emerging 

research areas, offering valuable guidance for future studies and 

interdisciplinary collaborations. 

 

IV. DISCUSSION 

 

This bibliometric study, utilizing VOSviewer, analysed 3386 

publications retrieved from the WoSCC to explore current 

trends in multi-omics cancer research over the past five years. 

The annual publication and citation output from January 2019 to 

February 2025 demonstrates a consistent growth pattern, 

indicating sustained growth and demand in this field. The 

increasing trends in both publications and citations suggest that 

multi-omics studies in cancer research are experiencing a period 

of rapid expansion. 

The study involved contributions from 86 countries and 

3954 institutions, highlighting the global engagement in this 

domain. China emerged as the leading contributor, with 2055 

publications accounting for over 50% of the total publications 

worldwide. Other prominent countries, including the United 

States, Germany, and the United Kingdom, also demonstrated 

strong international collaborations. Among institutions, the 

Chinese Academy of Sciences, Fudan University, Shanghai Jiao 

Tong University, Sun Yat-Sen University, and the Chinese 

Academy of Medical Sciences & Peking Union Medical College 

were the most active in producing publications related to multi-

omics cancer research globally. 

Notably, the University of Toronto in Canada and the Institut 

National de la Santé et de la Recherche Médicale (Inserm) in 

France were the most active institutions in their respective 

countries, contributing significantly to the publication output. 

While China leads in the total number of publications and 

citations, its average citation rate is lower compared to countries 

like France, indicating differences in research impact and 

influence. 

The most highly cited article in the dataset is “Metagenomic 

and metabolomic analyses reveal distinct stage-specific 

phenotypes of the gut microbiota in colorectal cancer” by 

Yachida et al., which received 819 citations. This landmark 

article, along with others, highlights the involvement of various 

cancer types such as colorectal, breast, hepatocellular 

carcinoma, ovarian, lung adenocarcinoma, renal cancer and 

endometrial carcinoma in multi-omics research. The gut 

microbiome, a subject of significant scientific interest, is 

prominently featured, with two articles related to this topic 

receiving the highest citations. 

In total, 9751 keywords were identified, including 5042 

author keywords and 4731 KeyWords Plus. These keywords can 

be categorized into several thematic groups, such as types of 

omics data, approaches to multi-omics studies, biological and 

molecular mechanisms and specific cancer types, reflecting the 

diverse and interdisciplinary nature of this research field. 

 

A. Limitations   

 

It is important to acknowledge certain limitations in this 

bibliometric study. First, the study focused exclusively on the 

WoSCC database, which may have excluded relevant studies 

from other databases, potentially introducing bias. Second, the 

analysis was restricted to English-language publications, 

meaning that non-English studies were not included. This 

exclusion may have led to the omission of valuable research that 

could have influenced the findings.  

In this study, the search strategy focused on the keywords 

‘multi-omic’ OR ‘multi-omics’ combined with ‘cancer’ OR 

‘cancers’ to ensure retrieval of publications directly related to 

multi-omics cancer research. Related synonyms such as ‘tumor,’ 

‘tumour,’ and ‘neoplasm’ were not included in the search terms 

to maintain specificity and manage the scope of the dataset. We 



Nur Sabrina Azmi & Weng Howe Chan / IJIC Vol. 15 No. 2 (2025) 149−158 

 

157 

 

recognize that excluding these synonyms may have omitted 

some relevant articles. Thus, future bibliometric analyses could 

expand keyword inclusion to capture a broader range of relevant 

literature. Despite these limitations, the retrieved bibliometric 

data provides valuable insights and offers researchers objective 

information on recent trends in multi-omics studies in cancer 

research.  

 

V. CONCLUSIONS 

 

In this bibliometric study, VOSviewer was employed to 

analyse publications related to multi-omics studies in cancer 

research. The findings reveal a significant and exponential 

increase in the number of publications and citations in this field 

over the past five years, a trend that is expected to continue. The 

peak in publication output during 2020 and 2021 can likely be 

attributed to the COVID-19 pandemic, which provided 

researchers with additional time and resources, thereby boosting 

productivity. The study analysed 3386 articles from 86 

countries, 3954 institutions, 9751 keywords, 5042 author 

keywords, and 4731 KeyWords Plus. China and the United 

States emerged as the top-ranking countries in terms of 

contributions. Among institutions, the University of Toronto in 

Canada and the Institut National de la Santé et de la Recherche 

Médicale (Inserm) in France stood out, each contributing more 

than 50% of the total citations within their respective countries. 

Author keyword analysis identified multi-omics, prognosis, 

immunotherapy, machine learning and tumor microenvironment 

as the most frequently occurring keywords, highlighting the 

dominant themes and emerging trends in multi-omics cancer 

research. The bibliometric findings offer a structured overview 

of research trajectories, facilitating strategic directions for future 

computational and multi-omics investigations.  
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