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Abstract—The integration of multi-omics approaches has
revolutionized cancer research by providing a comprehensive
understanding of cancer pathogenesis beyond single-omics
methods. By combining diverse omics data types, multi-omics
analyses improve precision in identifying intricate disease-related
mechanisms. Despite increasing interest, bibliometric analyses on
multi-omics research in oncology remain limited. This study
addresses this gap by conducting a bibliometric analysis of multi-
omics cancer research trends over the past six years (2019 to
February 2025), utilizing data from the Web of Science Core
Collection (WoSCC) accessed on 28 February 2025, and analysing
it with VOSviewer. The analysis of 3386 publications indexed in
WoSCC reveals a significant surge in multi-omics research. China
leads with 2055 publications, while the University of Toronto in
Canada and the Institut National de la Santé et de la Recherche
Médicale (Inserm) in France emerge as major contributors, each
accounting for more than 50% of their country's total publications
in this domain. Dominant keywords such as multi-omics,
prognosis, immunotherapy, machine learning and tumor
microenvironment highlight current research priorities. This
study provides a comprehensive overview of publication trends,
offering valuable insights to guide future research in multi-omics
cancer studies. By highlighting major contributors and emerging
focal points, this study aspires to foster advancements and inspire
future exploration in this pivotal domain.

VOSviewer,

Keywords—Multi-omics, Bibliometric

Computational biology

analysis,

I. INTRODUCTION

The complexity of biological systems has posed a significant
challenge for researchers seeking a holistic understanding of
human health. Additionally, the transformation of normal cells
into cancerous cells introduces complex behaviors that require
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study. To comprehend how cancer hallmarks are acquired, it is
essential to investigate the underlying mechanisms of cancer
cells by employing multiple sources of information. In
biological studies, ‘omics’ or ‘omes’ refer to comprehensive
fields of study related to specific biological molecules within an
organism. Examples include genomics, epigenomics,
proteomics, metabolomics, and transcriptomics. The distinct
characterization of each omics layer provides valuable insights
and correlations to diseases. The inception of omics studies can
be attributed to the success of the Human Genome Project,
which enabled the recognition of disease causes through
sequencing and analysing human genomes [1]. With the rapid
development of high-throughput technologies, also known as
next-generation sequencing, an extensive amount of omics data
is being produced at an accelerated volume and in a cost-
effective manner. The accumulation of available omics data and
clinical information offers significant opportunities for cancer
research, including disease subtyping [2-4], biomarker
discovery [5, 6], survival analysis [7, 8], subtypes prediction [9,
10], and more.

Previously, single-omics studies analysed disease causality
and screening methods to improve patient treatment. Single-
omics approaches primarily quantify molecular changes at the
tissue level but overlook system-wide interactions across
multiple omics layers within the cellular microenvironment,
limiting their ability to unravel the complexity of cancer [9].
However, it is now evident that the single-omics approach
disregards the molecular interactions across multiple omics
layers and fails to unravel the complexity of cancer. As a result,
single-omics studies often yield suboptimal prognostic insights
due to the exclusion of cross-omics molecular interactions.
Therefore, multi-omics analysis provides a more comprehensive
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understanding of a given phenotype [11]. Consequently,
researchers have made significant efforts to design robust and
reliable computational models for improving multi-omics data
analysis in clinical settings. For instance, one study prioritized
driver genes in colon and rectal cancers by integrating
proteomic, genomic and transcriptomic data [12].

According to studies, integrated omics offer the opportunity
to understand the flow of information underlying diseases,
compared to single-omics analysis [9]. In multi-omics, there is
no straightforward one-to-one relationship between the
correlation of cancer genotypes and phenotype instead, it
involves a complex network of interactions in biological events
[13]. Unlike multi-omics analysis, single-omics studies limit the
observation of the whole molecular biological interaction in
underlying diseases, resulting in unreliable and inaccurate
pathogenesis information. The interrelation between omics and
conditions in multi-omics provides more insights, such as
biological pathways or different processes between the disease
and control groups [9, 14]. Consequently, multi-omics has been
increasingly applied in cancer research to support treatment
decision-making [15]. With its ability to provide a deeper
understanding of disease mechanisms and individual variability
in treatment response, multi-omics holds great promise for
advancing precision medicine and improving patient outcomes.

The utilization of multi-omics analysis has resulted in a
significant rise in the number of research publications.
Bibliometric analysis is a systematic and comprehensive
research approach utilizing quantitative and qualitative methods
[16] to evaluate academic publications. This methodology has
been widely employed since the late 1800s and early 1900s [17]
and has become integral to scholarly research and evaluation.
Presently, it is often used to analyse and visualize accumulated
scientific knowledge, evaluate the influence of a group of
scholars, and extract dominant research topics [18-21].
However, comprehensive bibliometric analyses that capture
overarching trends in multi-omics cancer research across
various cancer types are scarce. To fill this gap, our study
conducts a broad bibliometric analysis over the past six years
(2019 to 2025), using the WoSCC database to map publication
trends, identify leading contributors, and highlight emerging
research themes in multi-omics cancer studies. This work aims
to provide researchers with a holistic understanding of the
evolving landscape, thereby guiding future investigations and
collaborations in this rapidly expanding field. We conducted all
searches on the same day (28 February 2025) to prevent bias due
to daily updates to the database.

By examining research trends over these years, this study
provides a timely overview of the evolving landscape of multi-
omics research in cancer. Understanding these trends can serve
as a guide for researchers by highlighting emerging topics,
influential ~contributors and key publication venues.
Additionally, this analysis may motivate researchers to explore
new directions in multi-omics studies, fostering further
advancements in this domain. Our study aims to provide
valuable insights through the growth of publications, landmark
articles, top keywords, country and institution contributions.
This work will serve as a resource for researchers, particularly
those new to multi-omics studies, to navigate and expand their
understanding of this evolving field.
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II. METHODS
A. Data Source and Search Strategy

The paper selection process used in this study is divided into
three phases, as illustrated in Fig. 1 and inspired by the approach
detailed in [22]. The UTM EZProxy of Universiti Teknologi
Malaysia (UTM) Library provides access to WoSCC
(https://library.utm.my/). The bibliometric analysis focuses on
the publications from WoSCC, which were refined from 2019 to
2025 (February). The Topic search field is used in the option of
the WoSCC searching tool, which queries on the title, abstract,
author keywords and Keywords Plus within a record instead of
focusing on specific searches using the Topic search field results
in a more efficient search, as it broadens the scope to include all
relevant records. The Boolean search string (‘multi-omic’ OR
‘multi-omics’) AND (‘cancer’ OR ‘cancers’) was used. To avoid
duplicate records arising from overlap between ‘multi-omic’ and
‘multi-omics’, we applied a NOT operator to exclude redundant
articles that appeared in both search terms.

‘ Topic Multi-omics Studies in Cancer Research
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Fig. 1. Flowchart of the three-phase paper selection process for bibliometric
analysis of multi-omics cancer research publications from 2019 to February
2025

In this study, we use the keyword search string multi-omic
and multi-omics. However, these two keywords have different
numbers of articles. Therefore, to eliminate the duplication of
articles between these keywords, the NOT operator removes
redundant articles that refer to the AND operator. Then, after
removing the duplication articles, the search is restricted to
cancer OR cancers articles only (using AND operator). We
conducted all searches on 28 February 2025 to prevent bias
caused by daily updates to the database. The six-year period,
including 2025, aims only to observe the current trends of multi-



Nur Sabrina Azmi & Weng Howe Chan / 1JIC Vol. 15 No. 2 (2025) 149-158

omics studies. The search focuses on the English language and
the document of research articles only. After thoroughly
reviewing 4454 records, we excluded 1068 records as they failed
to meet the study criteria. Consequently, we have shortlisted
3386 records that satisfy our bibliometric study requirements.

B. Data Analysis

The bibliometric analysis was conducted using VOSviewer.
VOSviewer was selected as the primary tool for this
bibliometric analysis due to its specialized capabilities in
constructing and visualizing bibliometric networks such as co-
authorship and keyword co-occurrence maps. It offers an
intuitive user interface and efficiently handles large datasets,
producing clear, high-quality visualizations that facilitate
interpretation of complex relationships in scientific
publications. Compared to other tools like CiteSpace, which
focuses more on detecting emerging trends and citation bursts,
VOSviewer provides a straightforward approach well-suited for
mapping collaboration patterns and research themes, aligning
closely with the objectives of our study. Additionally, NVivo,
while powerful for qualitative data analysis, is less optimized
for quantitative bibliometric mapping. Therefore, VOSviewer
was deemed the most appropriate tool to comprehensively
explore publication trends and collaboration networks in multi-
omics cancer research.

We utilized the Analyze Results feature in the Web of
Science database to examine and visualize the 3386 shortlisted
records. We then exported the selected records in Plain Text
File format, including full records based on the topic, scope and
eligibility criteria of the study. Due to system limitations, we
exported the records in batches of 500 per instance. We
performed bibliometric network analysis using VOSviewer, a
specialized tool for constructing and visualizing co-authorship
and keyword co-occurrence networks. VOSviewer is a
specialized tool for generating and visualizing bibliometric
maps [23, 24]. The analysis types used in this study are co-
authorship and co-occurrence.

We set a threshold to limit a maximum of 25 authors,
organizations, and countries per document. This value was
selected based on common bibliometric practices and
preliminary data exploration, balancing the inclusion of most
multi-authored publications while excluding outlier consortium
papers that could disproportionately influence the network
structure. This filtering approach helped maintain readability
and the interpretability of collaboration and keyword maps.

C. Bibliometric Analysis and Network Visualization

Bibliometric network analyses were conducted using
VOSviewer (version 1.6.20) to visualize collaboration patterns
and thematic structures within the multi-omics cancer research
literature. To ensure clarity and meaningful interpretation of the
networks, specific parameter thresholds and settings were
applied as follows:

Minimum Document and Citation Thresholds: For
country- and institution-level co-authorship networks
(Figs. 3 and 4), a minimum threshold of five documents
and five citations per entity was set. This filtering excluded
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sporadic contributors with limited research output or
impact, thereby reducing noise and enhancing the
robustness of the collaboration maps.
Clustering Method: Node clustering was performed using
VOSviewer’s built-in modularity-based algorithm, which
groups nodes based on the strength of their connections.
Nodes within the same cluster represent countries,
institutions, or keywords that frequently collaborate or co-
occur, with distinct colors assigned to each cluster to
highlight closely related groups.
Density Visualization Settings: For keyword co-
occurrence analysis (Fig. 5), density visualization was
generated using VOSviewer’s kernel density estimation
with default bandwidth parameters. In these maps, node
size corresponds to keyword frequency, while color
intensity reflects the local density of keyword co-
occurrence, emphasizing dominant research themes.
Limits on Contributors per Publication: To prevent
distortion caused by publications with exceptionally large
author lists or multiple affiliations (e.g., consortium
studies), a maximum limit of 25 authors, organizations, and
countries per document was imposed during data
processing. This constraint helps maintain the readability
and structural balance of the network visualizations by
mitigating overrepresentation from a few large
collaborations.
Keyword Occurrence Thresholds: For keyword co-
occurrence analysis, a minimum occurrence threshold of
10 was applied to filter terms, ensuring only keywords with
sufficient frequency were included to generate meaningful
networks. This threshold resulted in 506 keywords meeting
the criteria for analysis.
These parameter choices were guided by standard
bibliometric practice and informed by preliminary data
exploration to balance inclusiveness with visualization clarity.
The thresholds and settings applied enabled robust,
interpretable network maps that accurately reflect collaboration
patterns and thematic structures within multi-omics cancer
research.

IIT. RESULTS
A. Quantitative Analysis of Publication Trend

The bibliometric dataset analysed in this study consists of
3386 research articles. Table I provides a summary of the annual
publication and citation counts from 2019 to 2025, while Fig. 2
illustrates the annual distribution of publications and citations in
multi-omics cancer research from 2019 to early 2025. The bar
chart (light purple) represents the number of publications per
year, and the line graph (dark blue) represents the corresponding
citation counts.
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TABLE L. ANNUAL PUBLICATION AND CITATION COUNTS FOR
MULTI-OMICS CANCER RESEARCH ARTICLES INDEXED IN THE WEB
OF SCIENCE CORE COLLECTION FROM 2019 TO EARLY 2025. THE
TABLE PRESENTS RAW COUNTS AND HIGHLIGHTS YEAR-OVER-
YEAR PERCENTAGE CHANGES TO ILLUSTRATE GROWTH TRENDS.

% Change in % Change in

Year  Publications Publications Citations Citations
2019 155 — 153 —

2020 288 +85.2% 1309 +756.2%
2021 469 +62.8% 4082 +211.9%
2022 658 +40.3% 7762 +90.1%
2023 696 +5.8% 11457 +47.6%
2024 971 +39.5% 16810 +46.8%
2025%* 152 — 2784 —

Based on Fig. 2, an upward trend in publication volume is
evident from 2019 onwards, reaching its peak in 2024. A similar
pattern is observed for citations, which also peak in 2024 before
declining in early 2025. The lower figures for 2025 are likely
due to incomplete data since the counts represent partial-year
values up to February, and citations typically accumulate over
time. Over the past six years, multi-omics cancer research
publications have received an average of 5545.63 citations
annually, amounting to a total of 44365 citations.

The annual publication volume from 2019 to 2021 exhibits
steady and consistent growth, reflecting intensified research
efforts, potentially influenced by the COVID-19 pandemic [25-
27]. Factors contributing to this trend include increased funding
opportunities in biomedical research and expedited publication
processes during this period. This sustained growth underscores
the rising importance and urgency attributed to multi-omics
cancer research in recent years.

suoLEyG

W cistons

Fig. 2. Annual publication and citation trends in multi-omics cancer research
from 2019 through early 2025. Publication and citation counts for 2025
represent partial data collected up to February and should be interpreted with

caution

N 2019 ) 0t
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The relatively slower growth observed between 2022 and
2023 may be attributed to several factors. The initial rapid
increase in publications during earlier years was likely driven
by heightened urgency and increased funding related to the
COVID-19 pandemic, which accelerated biomedical research
broadly. By 2022, this surge stabilized as research priorities
adjusted, and some pandemic-related funding and expedited
publication mechanisms normalized. Additionally, the
complexity and longer timelines inherent to multi-omics studies
may have contributed to a more measured pace of publication
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growth. Furthermore, global challenges such as supply chain
disruptions, workforce shortages, and shifting funding
landscapes during the post-pandemic period could have
temporarily impacted research productivity. Despite this slower
incremental growth, the overall trend remains upward,
reflecting sustained interest and investment in multi-omics
approaches in cancer research.

From 2023 onwards, the trend of publication rates resumed
a steeper increase, possibly driven by advancements in
computational methodologies, greater availability of multi-
omics datasets, and improved analytical tools facilitating large-
scale integrative analyses. Overall, these trends underscore the
increasing significance of multi-omics approaches in cancer
research and the evolving landscape of scientific contributions
in this field.

To further elucidate the publication and citation dynamics
over the study period, we calculated the year-over-year
percentage changes (Table I). From 2019 to 2020, publications
increased sharply by approximately 85.2%, while citations
surged by over 750%, reflecting a rapid expansion in multi-
omics cancer research interest and impact. Subsequent years
showed positive but more moderate growth rates. For example,
publication growth slowed to 5.8% between 2022 and 2023,
and citations increased by around 47.6% during the same
interval. The early 2025 data represent only partial-year counts
and thus show lower numbers, which should be interpreted with
caution. These trends highlight both an initial surge, likely
influenced by factors such as increased funding and expedited
publishing during the COVID-19 pandemic, and sustained
growth driven by ongoing advancements in multi-omics
methodologies and data availability.

B. Collaborative Efforts in the Analysis of Countries and
Institutions

Bibliometric data show that 3954 institutions from 86
countries have contributed to multi-omics cancer research.
Table IT summarizes the top ten countries ranked by publication
output, along with their citation counts and leading institutions.

The top three countries, namely China, the United States,
and Germany, dominate this research area. China leads with
2055 publications, representing 60.7 percent of the total output,
and holds the highest citation count at 21841. The United States
follows with 794 publications, accounting for 23.5 percent, and
17793 citations, while Germany ranks third with 187
publications, representing 5.5 percent, and 3766 citations. This
concentration reflects significant research capacity and
investment in multi-omics cancer studies by these nations.

Leading Chinese institutions include the Chinese Academy
of Sciences with 156 publications, Fudan University with 145
publications, Shanghai Jiao Tong University with 142
publications, Sun Yat-Sen University with 141 publications, and
the Chinese Academy of Medical Sciences and Peking Union
Medical College with 107 publications. These five institutions
alone contribute substantially to Chinas dominant position.

In the United States, Harvard University leads with 102
publications, while in Germany the Helmholtz Association
contributes 72 publications. These institutions play pivotal roles
in driving their countries research outputs. Beyond the top three,
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other countries such as the United Kingdom, Canada, Italy,
India, South Korea, Australia, and France also contribute
notably to multi-omics cancer research. The University of
London with 39 publications and the University of Toronto with
57 publications emerge as key institutions in the United
Kingdom and Canada respectively. The University of Toronto
and Inserm in France, each with 48 publications, account for
about half of their countries’ total research output, highlighting
their importance as national research hubs.

While publication rankings generally align with citation
counts, some differences highlight variations in research impact.
For example, France, despite fewer publications than Canada,
has garnered more citations, suggesting higher average
influence or visibility in the field. These findings reveal a
research landscape concentrated among a few leading countries
and institutions but also underscore opportunities for broader
international collaboration.

TABLE II. TOP TEN COUNTRIES RANKED BY PUBLICATION OUTPUT
IN MULTI-OMICS CANCER RESEARCH, INCLUDING
CORRESPONDING CITATION COUNTS AND THE CONTRIBUTION OF
LEADING INSTITUTIONS EXPRESSED AS PERCENTAGES OF THEIR
COUNTRY'S TOTAL PUBLICATIONS.

Rank | Country Count Citation Institution Count
Chinese
2055 156
1 hi 21841 A f
China (60.7%) 8 cademy of | &)
Sciences
United 794 Harvard 102
2 States (23.5%) 17793 University (12.9%)
187 Helmbholtz 72
3| Gemany |5 sur) 37661 Association | (38.5%)
4 United 146 1614 University of 39
Kingdom (4.3%) London (26.7%)
114 University of 57
5 | Canada (3.4%) 2859 Toronto (50.0%)
Consiglio
Nazionale
108 12
6 Italy 0 1873 delle o
(3.2%) Ricerche (11.1%)
(CNR)
Indian
. 99 Institute of 16
I 2
7 | India (2.9%) 728 | Technology | (16.2%)
System
Seoul
South 96 39
8 o 1099 National o
Korea (2.8%) University (40.6%)
. 92 University of 22
? Australia 2.7% 2222 ueensland 23.9%
(2.7%) Q ( )
Institut
National De
La Sante Et
89 48
10 France o 3089 De La o
(2.6%) Recherche (53.9%)
Medicale
Inserm

The total link strength metric captures the extent of
international collaboration. Fig. 3 highlights this measure for
countries and Fig. 4 displays the same for institutions. For Fig.
3, we applied a threshold requiring a minimum of five
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documents and citations per country. Out of 86 countries, 53 met
this threshold, resulting in 53 nodes in Fig. 3, each representing
a country. Based on this analysis, United States, China,
Germany and United Kingdom exhibit denser and more
extensive connections with other nodes on the map, indicating
strong international collaboration worldwide.

Fig. 3 illustrates six clusters of countries based on total link
strength in co-authorship networks. Nodes represent individual
countries, while edges denote collaborative publication
relationships. For instance, if researchers from two countries
have co-authored a publication, a link is created between those
two countries. The size of each node corresponds to the number
of publications, with China having the largest node due to its
highest publication count, followed by the United States,
Germany and United Kingdom. Consequently, the China node
is the most prominent in the map, as the node weight in this
analysis is based on the number of publications.
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Fig. 3. Co-authorship network map of countries involved in multi-omics cancer
research based on a minimum of five documents and citations. The size of each
node represents the number of publications, the thickness of connections
indicates collaboration strength, and different colors represent clusters of
frequently collaborating countries

For Fig. 4, institutions were required to have at least five
documents and citations to be included on the map. Out of 3954
institutions, 434 met this threshold. Fig. 4 displays nine clusters
of institutions with the strongest co-authorship links. The nodes
on the map represent institutions and the links represent co-
authorship relationships. A link is created when researchers
from two institutions have co-authored a publication. Among the
clusters, Cluster 1 (indicated by red nodes), Cluster 2
(represented by green nodes), and Cluster 3 (highlighted by blue
nodes) are the most prominent on the map. The size of the nodes
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in Fig. 4 corresponds to the total link strength of the institutions.
As aresult, institutions with higher total link strength have more
prominent node labels. Notable examples include Shanghai Jiao
Tong University, Chinese Academy of Sciences, Fudan
University, Harvard Medical School and Sun Yat-Sen
University, which are among the most significant nodes on the
map.

C. Landmark Articles

Out of 3386 articles, we retrieved ten highly cited papers
from WoSCC, as presented in Table III. The most cited paper,
with 819 citations, was authored by Yachida et al. and focused
on ‘Metagenomic and metabolomic analyses reveal distinct
stage-specific phenotypes of the gut microbiota in colorectal
cancer’ [28]. Based on publications from 2019 to 2025, the top
ten landmark articles in multi-omics studies have addressed
various types of cancer, including colorectal, breast,
hepatocellular carcinoma, ovarian, lung adenocarcinoma, renal
cancer and endometrial carcinoma.
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Fig. 4. Network map showing institutional co-authorship in multi-omics cancer
research with a threshold of at least five documents and citations. Node sizes
correspond to collaborative activity levels, links indicate co-authorship
relationships, and colors denote clusters of closely collaborating institutions.
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The study of gut microbiome has become increasingly
popular in recent times and this is proven by the two articles
related to the gut microbiome garnered the highest citations. It
has been researched on a range of health conditions, including
obesity, diabetes, liver diseases, cancer and neurodegenerative
disorders. This indicates that gut microbiome study extends
beyond cardiovascular disease [29]. According to Li et al. [30],
much scientific research has been dedicated to the gut
microbiome in the past two decades. There are over 50000
research articles on this topic in the WoSCC alone, with a
consistent increase in publications over time. Thus, the gut
microbiome is a subject of great interest in scientific research.
The scientific community is highly interested in the microbiome
and it has also captured the attention of the public and
businesses, which is evident from its press coverage [31].
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Support from governments and international organizations,
particularly in financial aid, has been instrumental in the growth
of this research field. For example, the United States National
Institutes of Health (NIH) invested $216 million in the Human
Microbiome Project in 2016 [30].

Two of the most highly cited landmark articles in our dataset
focus on the gut microbiome, underscoring its emerging
significance within multi-omics cancer research. The gut
microbiome represents a complex and dynamic ecosystem that
influences cancer pathogenesis, treatment response, and patient
outcomes through intricate molecular interactions. Multi-omics
approaches enable comprehensive characterization of microbial
communities alongside host genomics, transcriptomics,
metabolomics, and proteomics, providing deeper insights into
these interactions.

The prominence of gut microbiome studies highlights how
integrative multi-omics analyses are advancing our
understanding of cancer biology beyond traditional single-omics
methods. This integrative perspective facilitates identification of
novel biomarkers and therapeutic targets, particularly in cancers
such as colorectal carcinoma, where microbial dysbiosis plays a
critical role. The high citation impact of these studies reflects
growing research interest and the translational potential of
microbiome-focused multi-omics investigations in oncology.

D. Keywords

To analyse keywords in bibliometric data, co-occurrence
analysis was applied to all keyword units. A total of 9751
keywords were identified, out of which only 506 keywords met
the minimum threshold of having at least 10 occurrences. Fig. 5
displays the density visualization of the keyword analysis, where
eight clusters were identified. The most significant node in the
map represents the keyword with the highest occurrence. Nodes
in the map represent total link strength, and their size
corresponds to the frequency of keyword usage. From Fig. 5,
keywords such as expression, cancer, multi-omics and prognosis
appear in a larger font size compared to other keywords,
indicating that they are the most frequently used terms in the
research articles. The keyword expression is part of Cluster 1
(represented by green nodes), while immunotherapy and
prognosis belong to Cluster 2 (represented by red nodes).

A total of 5853 author keywords were identified, of which
169 keywords met the minimum threshold of at least 10
occurrences each. Fig. 6 presents the overlay visualization of
the co-occurrence analysis for author keyword units, revealing
seven distinct clusters. The most prominent node in the map
represents keywords with the highest occurrence across all
records, including multi-omics (533 occurrences), prognosis
(300 occurrences), immunotherapy (277 occurrences), machine
learning (166 occurrences) and tumor microenvironment (146
occurrences). The node colors correspond to the average
citation values, with Cluster 1 (indicated by yellow nodes)
receiving the highest citations. This cluster highlights the
application of computational methods and interdisciplinary
approaches in multi-omics research, encompassing keywords
such as artificial intelligence, machine learning, deep learning,
feature selection, autoencoders, cancer subtype classification,
survival analysis, and others.
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In addition, a total of 4731 KeyWords Plus were identified,
of which 330 keywords met the minimum threshold of at least
10 occurrences each. The top five KeyWords Plus, based on
their frequency, include expression (828 occurrences), cancer
(741 occurrences), cells (322 occurrences), survival (241
occurrences), and identification (228 occurrences). These high-
frequency keywords reflect the dominant themes and focus areas
within the dataset, particularly in fields such as oncology,
molecular biology and biomedical research.

TABLE IIIl. THE TEN MOST HIGHLY CITED LANDMARK ARTICLES IN
MULTI-OMICS CANCER RESEARCH PUBLISHED BETWEEN 2019 AND
EARLY 2025, LISTING FIRST AUTHOR, YEAR, JOURNAL, AND
CITATION COUNT

Citati
on

First

Bl author

Title Year Journal Ref.

Yachid
a, S

2019 Nature 819

Medicine

1 Metagenomic
and metabolomic
analyses reveal
distinct stage-
specific
phenotypes of
the gut
microbiota in
colorectal cancer

(28]

2021 | Nature 663

Genetics

A single-cell and
spatially resolved
atlas of human
breast cancers

Wu, SZ [32]

IOBR: Multi-
Omics Immuno-
Oncology
Biological
Research to
Decode Tumor
Microenvironme
nt and Signatures

2021 596

Frontiers in
Immunology

Zeng,
DQ

(33]

Integrated 2019 | Cell 589
Proteogenomic
Characterization
of HBV-Related
Hepatocellular

Carcinoma

Gao, Q [34]

Weers 2020 | Gut 506

ma, RK

Interaction
between drugs
and the gut
microbiome

[35]

The m°A reader
YTHDF1
promotes ovarian
cancer
progression via
augmenting
EIF3C
translation

2020 | Nucleic 485
Acids

Research

Liu, T [36]

Gillette, Cell

MA

Proteogenomic 2020 438
Characterization
Reveals
Therapeutic
Vulnerabilities in
Lung

Adenocarcinoma

371
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Fig. 7 presents the network visualization of the co-occurrence
analysis for all KeyWords Plus units, revealing seven distinct
clusters within the map. Each cluster represents a group of
closely related keywords, indicating thematic subdomains or
research trends. For instance, Cluster 1 emphasizes molecular
and cellular mechanisms, featuring keywords such as antibody,
B-cell and pathogenesis, while Cluster 2 focuses on molecular
biology, including terms like glycolysis, hypoxia and
degradation. The visualization highlights not only the frequency
of keyword co-occurrence but also the interconnectedness of
research topics, providing insights into the structure and
evolution of the field.
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Fig. 5. Density visualization of keyword co-occurrence in multi-omics cancer
research publications. Node size reflects keyword frequency, and warmer
colors indicate areas with higher densities of co-occurring keywords,
highlighting dominant research themes.
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The size and color of nodes in the network correspond to the
frequency and impact of the keywords, respectively, allowing
for a clear interpretation of their significance. Keywords with
larger nodes indicate higher occurrences, while smaller nodes
represent less prominent terms. This layered representation
enables the identification of both established and emerging
research areas, offering valuable guidance for future studies and
interdisciplinary collaborations.

IV. DISCUSSION

This bibliometric study, utilizing VOSviewer, analysed 3386
publications retrieved from the WoSCC to explore current
trends in multi-omics cancer research over the past five years.
The annual publication and citation output from January 2019 to
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February 2025 demonstrates a consistent growth pattern,
indicating sustained growth and demand in this field. The
increasing trends in both publications and citations suggest that
multi-omics studies in cancer research are experiencing a period
of rapid expansion.

The study involved contributions from 86 countries and
3954 institutions, highlighting the global engagement in this
domain. China emerged as the leading contributor, with 2055
publications accounting for over 50% of the total publications
worldwide. Other prominent countries, including the United
States, Germany, and the United Kingdom, also demonstrated
strong international collaborations. Among institutions, the
Chinese Academy of Sciences, Fudan University, Shanghai Jiao
Tong University, Sun Yat-Sen University, and the Chinese
Academy of Medical Sciences & Peking Union Medical College
were the most active in producing publications related to multi-
omics cancer research globally.

Notably, the University of Toronto in Canada and the Institut
National de la Santé et de la Recherche Médicale (Inserm) in
France were the most active institutions in their respective
countries, contributing significantly to the publication output.
While China leads in the total number of publications and
citations, its average citation rate is lower compared to countries
like France, indicating differences in research impact and
influence.

The most highly cited article in the dataset is “Metagenomic
and metabolomic analyses reveal distinct stage-specific
phenotypes of the gut microbiota in colorectal cancer” by
Yachida et al., which received 819 citations. This landmark
article, along with others, highlights the involvement of various
cancer types such as colorectal, breast, hepatocellular
carcinoma, ovarian, lung adenocarcinoma, renal cancer and
endometrial carcinoma in multi-omics research. The gut
microbiome, a subject of significant scientific interest, is
prominently featured, with two articles related to this topic
receiving the highest citations.

In total, 9751 keywords were identified, including 5042
author keywords and 4731 KeyWords Plus. These keywords can
be categorized into several thematic groups, such as types of
omics data, approaches to multi-omics studies, biological and
molecular mechanisms and specific cancer types, reflecting the
diverse and interdisciplinary nature of this research field.

A. Limitations

It is important to acknowledge certain limitations in this
bibliometric study. First, the study focused exclusively on the
WoSCC database, which may have excluded relevant studies
from other databases, potentially introducing bias. Second, the
analysis was restricted to English-language publications,
meaning that non-English studies were not included. This
exclusion may have led to the omission of valuable research that
could have influenced the findings.

In this study, the search strategy focused on the keywords
‘multi-omic’ OR ‘multi-omics’ combined with ‘cancer’ OR
‘cancers’ to ensure retrieval of publications directly related to
multi-omics cancer research. Related synonyms such as ‘tumor,’
‘tumour,” and ‘neoplasm’ were not included in the search terms
to maintain specificity and manage the scope of the dataset. We
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recognize that excluding these synonyms may have omitted
some relevant articles. Thus, future bibliometric analyses could
expand keyword inclusion to capture a broader range of relevant
literature. Despite these limitations, the retrieved bibliometric
data provides valuable insights and offers researchers objective
information on recent trends in multi-omics studies in cancer
research.

V. CONCLUSIONS

In this bibliometric study, VOSviewer was employed to
analyse publications related to multi-omics studies in cancer
research. The findings reveal a significant and exponential
increase in the number of publications and citations in this field
over the past five years, a trend that is expected to continue. The
peak in publication output during 2020 and 2021 can likely be
attributed to the COVID-19 pandemic, which provided
researchers with additional time and resources, thereby boosting
productivity. The study analysed 3386 articles from 86
countries, 3954 institutions, 9751 keywords, 5042 author
keywords, and 4731 KeyWords Plus. China and the United
States emerged as the top-ranking countries in terms of
contributions. Among institutions, the University of Toronto in
Canada and the Institut National de la Santé et de la Recherche
Médicale (Inserm) in France stood out, each contributing more
than 50% of the total citations within their respective countries.
Author keyword analysis identified multi-omics, prognosis,
immunotherapy, machine learning and tumor microenvironment
as the most frequently occurring keywords, highlighting the
dominant themes and emerging trends in multi-omics cancer
research. The bibliometric findings offer a structured overview
of research trajectories, facilitating strategic directions for future
computational and multi-omics investigations.

ACKNOWLEDGMENT

The authors would like to thank Universiti Teknologi
Malaysia for supporting this study through the UTM
Encouragement Research Grant Scheme (VOT 42J11).

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest
regarding the publication of this paper.

REFERENCES

International Human Genome Sequencing Consortium. (2004).
Finishing the euchromatic sequence of the human genome.
Nature, 431(7011), 931-945.
https://doi.org/10.1038/nature03001.

Menyhart, O., & Gyérffy, B. (2021). Multi-omics approaches in
cancer research with applications in tumor subtyping, prognosis,
and diagnosis. Computational and Structural Biotechnology
Journal, 19, 949-960.
https://doi.org/10.1016/j.csbj.2021.01.009.

Azmi, N. S., A. Samah, A., Sirgunan, V., Ali Shah, Z., Abdul
Majid, H., Howe, C. W, et al. (2022). Comparative analysis of
deep learning algorithm for cancer classification using multi-

157

(4]

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

omics feature selection. Progress in Microbes & Molecular
Biology, 5(1). https://doi.org/10.36877/pmmb.a0000278.

Azmi, N. S., A. Samah, A., Abdul Majid, H., Ali Shah, Z.,
Hashim, H., Azman, N. S., & Mohamed Hashim, E. K. (2022).
Classifying sarcoma cancer using deep neural networks based on
multi-omics data. International Journal of Innovative
Computing, 12(1), 73-80.
https://doi.org/10.11113/ijic.v12n1.360.

Hussein, R., Abou-Shanab, A. M., & Badr, E. (2024). A multi-
omics approach for biomarker discovery in neuroblastoma: A
network-based  framework. npj Systems Biology and
Applications, 10. https://doi.org/10.1038/s41540-024-00371-3
Yan, J., Risacher, S. L., Shen, L., & Saykin, A. J. (2018).
Network approaches to systems biology analysis of complex
disease: Integrative methods for multi-omics data. Briefings in
Bioinformatics, 19(6), 1370-1381.
https://doi.org/10.1093/bib/bbx066.

Jiang, L., Xu, C., Bai, Y., Liu, A,, Gong, Y., Wang, Y.-P., &
Deng, H.-W. (2024). AutoSurv: Interpretable deep learning
framework for cancer survival analysis incorporating clinical
and multi-omics data. npj Precision Oncology, 8.
https://doi.org/10.1038/341698-023-00494-6.

Sathyamoorthi, K., VP, A., Venkataramana, L. Y., & Prasad, V.
V. D. (2025). Enhancing breast cancer survival prognosis
through omic and non-omic data integration. Clinical Breast
Cancer, 25(1), 27-37.
https://doi.org/10.1016/j.clbc.2024.08.009.

Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics
approaches to disease. Genome Biology, 18.
https://doi.org/10.1186/s13059-017-1215-1.

Zhong, Y., Peng, Y., Lin, Y., Chen, D., Zhang, H., Zheng, W.,
et al. (2023). MODILM: Towards better complex diseases
classification using a novel multi-omics data integration learning
model. BMC Medical Informatics and Decision Making, 23.
https://doi.org/10.1186/s12911-023-02173-9.

Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A., &
Kim, D. (2015). Methods of integrating data to uncover
genotype—phenotype interactions. Nature Reviews Genetics, 16,
85-97. https://doi.org/10.1038/nrg3868.

Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., et al.
(2014). Proteogenomic characterization of human colon and
rectal cancer. Nature, 513, 382-387.
https://doi.org/10.1038/nature13438.

Lehner, B. (2007). Modelling genotype—phenotype relationships
and human disease with genetic interaction networks. Journal of
Experimental Biology, 21009), 1559-1566.
https://doi.org/10.1242/jeb.002311.

Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N.
W., Lewis, P. A., & Ferrari, R. (2016). Genome, transcriptome
and proteome: The rise of omics data and their integration in
biomedical sciences. Briefings in Bioinformatics, 19(2), 286—
302. https://doi.org/10.1093/bib/bbw114.

Mohammed, M., Mwambi, H., Mboya, 1. B., Elbashir, M. K., &
Omolo, B. (2021). A stacking ensemble deep learning approach
to cancer type classification based on TCGA data. Scientific
Reports, 11. https://doi.org/10.1038/s41598-021-95128-x.

Cai, X.-J., Zhang, H.-Y., Zhang, J.-Y., & Li, T.-J. (2023).
Bibliometric analysis of immunotherapy for head and neck
squamous cell carcinoma. Journal of Dental Sciences, 18(2),
872-882. https://doi.org/10.1016/j.jds.2023.02.007.

Nicola, D. B. (2009). Bibliometrics and citation analysis: From
the Science Citation Index to cybermetrics. Scarecrow Press.
Ma, D., Yang, B., Guan, B., Song, L., Liu, Q., Fan, Y., ef al.
(2021). A bibliometric analysis of pyroptosis from 2001 to 2021.



[19]

[20]

[28]

Nur Sabrina Azmi & Weng Howe Chan / 1JIC Vol. 15 No. 2 (2025) 149-158

Frontiers in Immunology, 12.
https://doi.org/10.3389/fimmu.2021.731933.

Yao, R. Q., Ren, C., Wang, J. N., Wu, G. S., Zhu, X. M., Xia, Z.
F., & Yao, Y. M. (2020). Publication trends of research on sepsis
and host immune response during 1999-2019: A 20-year
bibliometric analysis. International Journal of Biological
Sciences, 16(1),27-37. https://doi.org/10.7150/ijbs.37496.

Jia, Y. P., Liu, D. C,, Cao, T. L., Jiang, H. Z., Li, T.,, Li, Y., &
Ding, X. (2025). Advances and global trends of precancerous
lesions of gastric cancer: A bibliometric analysis. World Journal
of Gastrointestinal Oncology, 17(3).
https://doi.org/10.4251/wjgo.v17.13.102111.

Wang, Z., Zhao, Y., & Zhang, L. (2024). Emerging trends and
hot topics in the application of multi-omics in drug discovery: A
bibliometric and visualized study. Current Pharmaceutical
Analysis, 21(1), 20-32.
https://doi.org/10.1016/j.cpan.2024.12.001.

Ejaz, H., Zeeshan, H. M., Ahmad, F., Bukhari, S. N. A., Anwar,
N., Alanazi, A., et al (2022). Bibliometric analysis of
publications on the Omicron variant from 2020 to 2022 in the
Scopus database using R and VOSviewer. International Journal
of Environmental Research and Public Health, 19(19).
https://doi.org/10.3390/ijerph191912407.

van Eck, N. J, & Waltman, L. (2010). Software survey:
VOSviewer, a computer program for bibliometric mapping.
Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-
009-0146-3.

van Eck, N. J., & Waltman, L. (2020). VOSviewer manual:
Manual for VOSviewer version 1.6.15. Centre for Science and
Technology Studies, Leiden University.

Murillo, J., Villegas, L. M., Ulloa-Murillo, L. M., & Rodriguez,
A. R. (2021). Recent trends on omics and bioinformatics
approaches to study SARS-CoV-2: A bibliometric analysis and
mini-review. Computers in Biology and Medicine, 128.
https://doi.org/10.1016/j.compbiomed.2020.104162.

Miiller, S. M., Mueller, G. F., Navarini, A. A., & Brandt, O.
(2020). National publication productivity during the COVID-19
pandemic: A preliminary exploratory analysis of the 30 countries
most affected. Biology, 909).
https://doi.org/10.3390/biology9090271.

Kambhampati, S. B. S., Vaishya, R., & Vaish, A. (2020).
Unprecedented surge in publications related to COVID-19 in the
first three months of pandemic: A bibliometric analytic report.
Journal of Clinical Orthopaedics & Trauma, 11, S304-S306.
https://doi.org/10.1016/j.jcot.2020.04.030.

Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T.,
Sakamoto, T., et al. (2019). Metagenomic and metabolomic
analyses reveal distinct stage-specific phenotypes of the gut
microbiota in colorectal cancer. Nature Medicine, 25, 968-976.
https://doi.org/10.1038/s41591-019-0458-7.

158

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

(38]

[39]

[40]

Cani, P. D. (2018). Human gut microbiome: Hopes, threats and
promises. Gut, 67, 1716-1725. https://doi.org/10.1136/gutjnl-
2018-316723.

Li, D., Gao, C., Zhang, F., Yang, R., Lan, C., Ma, Y., & Wang,
J. (2020). Seven facts and five initiatives for gut microbiome
research. Protein & Cell, 11(6), 391-400.
https://doi.org/10.1007/s13238-020-00697-8.

Prados-Bo, A., & Casino, G. (2021). Microbiome research in
general and business newspapers: How many microbiome
articles are published and which study designs make the news
the most? PLOS ONE, 16(4).
https://doi.org/10.1371/journal.pone.0249835.

Wu, S. Z., Al-Eryani, G., Roden, D. L., Junankar, S., Harvey, K.,
Andersson, A., et al. (2021). A single-cell and spatially resolved
atlas of human breast cancers. Nature Genetics, 53, 1334-1347.
https://doi.org/10.1038/s41588-021-00911-1.

Zeng, D., Ye, Z., Shen, R., Yu, G., Wu, J., Xiong, Y., et al.
(2021). IOBR: Multi-omics immuno-oncology biological
research to decode tumor microenvironment and signatures.
Frontiers in Immunology, 12.
https://doi.org/10.3389/fimmu.2021.687975.

Gao, Q., Zhu, H., Dong, L., Shi, W., Chen, R., Song, Z., et al.
(2019). Integrated proteogenomic characterization of HBV-
related hepatocellular carcinoma. Cell, 179(2), 561-577.€22.
https://doi.org/10.1016/j.cell.2019.08.052.

Weersma, R. K., Zhernakova, A., & Fu, J. (2020). Interaction
between drugs and the gut microbiome. Gut, 69, 1510-1519.
https://doi.org/10.1136/gutjnl-2019-320204.

Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., et al. (2020).
The m6A reader YTHDF1 promotes ovarian cancer progression
via augmenting EIF3C translation. Nucleic Acids Research,
48(7), 3816-3831. https://doi.org/10.1093/nar/gkaa048.
Gillette, M. A., Satpathy, S., Cao, S., Dhanasekaran, S. M.,
Vasaikar, S. V., Krug, K., et al (2020). Proteogenomic
characterization reveals therapeutic vulnerabilities in lung
adenocarcinoma. Cell, 182(1), 200-225.e35.
https://doi.org/10.1016/j.cell.2020.06.013.

Liu, Y., Yang, M., Deng, Y., Su, G., Enninful, A., Guo, C. C., et
al. (2020). High-spatial-resolution multi-omics sequencing via
deterministic barcoding in tissue. Cell, 183(6), 1665-1681.¢18.
https://doi.org/10.1016/j.cell.2020.10.026.

Motzer, R. J., Banchereau, R., Hamidi, H., Powles, T.,
McDermott, D., Atkins, M. B., et al. (2020). Molecular subsets
in renal cancer determine outcome to checkpoint and
angiogenesis blockade. Cancer Cell, 38(6), 803-817.e4.
https://doi.org/10.1016/j.ccell.2020.10.011.

Dou, Y. C., Kawaler, E. A., Zhou, D. C., Gritsenko, M. A.,
Huang, C., Blumenberg, L., er al. (2020). Proteogenomic
characterization of endometrial carcinoma. Cell, 180(4), 729—
748.€26. https://doi.org/10.1016/j.cell.2020.01.026.



