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Abstract—The rise of Industry 4.0 has led to the widespread 
adoption of Industrial Internet of Things (IIoT) devices, enhancing 
manufacturing efficiency while introducing significant 
cybersecurity risks. IIoT environments are highly susceptible to 
cyber threats such as Denial-of-Service (DoS), SQL injection, and 
ransomware, which can lead to production downtime and data 
breaches. Traditional intrusion detection systems (IDS) often fail 
to detect evolving threats, resulting in high false negative rates. 
This research proposes an advanced IDS integrating 
Convolutional Neural Networks (CNN) with Long Short-Term 
Memory (LSTM) to enhance IIoT security. By leveraging both 
spatial and temporal feature extraction, the proposed model 
effectively identifies network anomalies in real-time industrial 
environments. This study contributes to IIoT cybersecurity by 
developing an IDS capable of improving threat detection through 
the integration of CNN and LSTM architectures. The approach 
enhances pattern recognition and sequential dependency modeling, 
making it more adaptive to dynamic cyber threats. The model is 
trained and evaluated on a large-scale IIoT dataset, achieving a 
binary classification accuracy of 71%, outperforming several 
state-of-the-art models. The CNN-LSTM IDS demonstrates a 
strong ability to recognize normal traffic, with a recall of 99%, 
significantly reducing false alarms. In multi-class classification, 
the model successfully identifies certain high-volume attack types, 
such as DDoS. These findings underscore both the strengths and 
limitations of deep learning-based intrusion detection in IIoT 
environments. While the proposed model offers significant 
improvements, further research is needed to address the detection 
of low-frequency attacks and optimize classification performance. 

Keywords—Convolutional Neural Network, Long-Term-Short-
Memory Network, Intrusion Detection System, Industrial Internet 
of Things 

I. INTRODUCTION

In the era of Industry 4.0, component manufacturing is 
gaining popularity among industries due to its numerous 
benefits. The integration of physical processes with digital 
connectivity, driven by the rapid expansion of Internet of Things 
(IoT) devices, this technological advancement has significantly 
influenced society. Particularly in the manufacturing sector, IoT 
devices play a crucial role in collecting data from automation 
machines. The worldwide adoption of IoT devices is projected 
to reach around 75.44 billion by the year 2025 [1]. The Industrial 
Internet of Things (IIoT) is specifically designed for the 
manufacturing industry, enabling the interconnection and 
intelligence of industrial systems with the help of sensors and 
actuators [2]. However, as the manufacturing industry rapidly 
adopts IIoT technology, the increased connectivity has also 
elevated the risk of cyber-attacks. These malicious activities, 
known as intrusions, involve monitoring computer systems or 
networks and analyzing events for signs of security problems [3]. 

The IIoT devices are increasingly vulnerable to intrusions 
and malware due to their interconnected nature and often 
inadequate security measures, presenting significant challenges 
in effectively identifying and analyzing these threats in real-time 
to prevent potential disruptions in industrial operations. 
Traditional IDS may not be sufficient to address the 
sophisticated and evolving nature of cyber threats targeting IIoT 
devices, because they can lead to a higher false negative since 
they cannot identify unknown attacks. Thus, implementing 
advanced machine learning techniques, for instance CNN [4], 
offers a promising approach for enhancing the detection 
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capabilities of IDS. To ensure the reliability and effectiveness of 
a deep learning-based IDS, validating the intrusion classification 
model through stringent performance metrics is crucial to 
ensuring its reliability and effectiveness. The challenge lies in 
accurately assessing the model's performance and ensuring it 
meets the required standards for performance metrics. 

The aim of this research is to apply CNN implemented by 
Long Short-Term Memory (LSTM) to develop a complete 
Intrusion Detection System for IIoT security. To achieve the aim, 
the objectives of this research are: (1) to identify and analyze the 
intrusions or malware in IIoT, (2) to develop and IDS using a 
deep learning approach by combining CNN with LSTM, and (3) 
to validate the intrusion classification model through the 
performance and verify the intrusion classification model using 
metrics such as accuracy, F1-score, precision, and recall. 

The outline for the research article starts with section one 
with brief introduction of related works in the intrusions in 
Industrial Internet of Things, section two with a the related 
works about existing deep learning techniques in the IDS in 
IIoTs, section three with introduction of the proposed 
CNN+LSTM network algorithms, section four with 
experimental details, and their corresponding results which are 
given comprehensive discussion on their effectiveness over the 
proposed CNN+LSTM and other existing deep learning models, 
finally the section five details the conclusion related to the 
proposed experiment and methodology. 

 
II. RELATED WORKS 

 
The implementation of CNNs for IDS in the IIoT has 

garnered significant attention in recent years. CNNs, known for 
their ability to automatically extract features and handle high-
dimensional data, offer a promising solution for the complex and 
evolving cybersecurity threats facing IIoT environments.  

This section reviews related works that explore the 
application of CNNs in IDS for IIoT, highlighting their 
methodologies, performance, and the unique challenges 
addressed, with the summary as shown in Table I. Through this 
review, the effectiveness and advancements of CNN-based IDS 
in safeguarding IIoT systems are elucidated, providing a 
comprehensive understanding of current research trends and 
future directions. 

Despite significant advancements in CNN-based intrusion 
detection models for IIoT environments, existing approaches 
exhibit certain limitations that necessitate further improvement. 
Several studies have attempted to enhance feature extraction and 
classification performance through various deep learning 
architectures. For instance, CNN with Vision Transformers (ViT) 
[5] to leverage spatial attention mechanisms, achieving a binary 
classification accuracy of 96.3% and a multiclass accuracy of 

96.4%. However, this model heavily relied on the flow-to-image 
conversion technique, which may introduce computational 
overhead and data transformation biases. Similarly, the Res-
CNN-SRU model [6] incorporating residual connections and 
Simple Recurrent Units (SRU) to mitigate the vanishing 
gradient problem, achieving 98.79% accuracy. Nevertheless, the 
SRU's efficiency in capturing long-term dependencies remains 
suboptimal compared to LSTM-based approaches. 

Another notable study about MBConv-ViT [7], a hybrid 
model that combined deep separable convolutions and multi-
head attention for global and local feature extraction, achieving 
an exceptional accuracy of 99.99%. While this model 
demonstrated superior classification performance, it struggled 
with imbalanced datasets, potentially leading to biased detection 
results favoring majority classes. Additionally, the integration of 
CNN, LSTM, and attention mechanisms for intrusion detection 
[8], but their approach yielded an F1-score of 85%, indicating 
potential challenges in capturing complex attack patterns 
effectively. Moreover, the CNN-LSTM-GRU [9] for detecting 
cyber threats in electric vehicle charging stations, achieving 100% 
binary classification accuracy. While this model effectively 
captured sequential dependencies, the inclusion of both LSTM 
and GRU increased computational complexity, which may 
hinder real-time application feasibility. 

Given these gaps, the proposed CNN-LSTM model is 
chosen as an optimal solution for IIoT intrusion detection due to 
its ability to effectively capture both spatial and temporal 
features. CNN is well-suited for learning hierarchical spatial 
representations from network traffic data, while LSTM excels in 
modeling long-term dependencies, which is crucial for detecting 
sequential attack patterns over time. Unlike ViT-based models 
that require extensive pre-processing, CNN directly processes 
raw network traffic, reducing computational overhead. 
Moreover, compared to SRU and GRU, LSTM offers superior 
retention of past information through its gating mechanism, 
making it more effective for analyzing time-dependent network 
anomalies. 

By integrating CNN and LSTM, the proposed model 
overcomes the limitations of prior approaches by efficiently 
extracting spatial correlations while preserving temporal 
dependencies in network traffic data. This hybrid architecture 
enhances the detection of sophisticated cyber threats, improves 
classification accuracy across diverse attack types, and ensures 
robust performance even in the presence of imbalanced datasets. 
Consequently, CNN-LSTM emerges as the most suitable deep 
learning framework for enhancing IIoT security, addressing the 
deficiencies of existing methods while maintaining 
computational efficiency and adaptability to evolving attack 
patterns. 
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TABLE I.  SUMMARY OF THE PERFORMANCE OF CNN APPROACHES FOR INTRUSION DETECTION SYSTEM IN IIOT 
 

No Model Dataset Result Advantages Disadvantages 
1 CNN with ViT 

classifier 
[5] 

CIC IDS2017 • Binary classification: 
Accuracy 96.3% 

• Multiclass classification: 
Testing Accuracy 96.4% 

• 8.09% higher accuracy 
compared to the other 
algorithms. 

• Reduced performance for 
categories with small data sizes 
due to lower information gain 
for distinguishing features. 

2 Res-CNN-SRU 
[6] 

Gas pipeline 
industry dataset 

proposed by 
Mississippi 

State University 

• High accuracy of 98.79% 
• Precision of 95.34% 
• Recall of 95.04% 
• F1-score of 95.19% 

• Improved recognition rate. 
• Reduced false alarm rate. 
• Shortened the training time. 

• Not ideal to detect unknown 
attacks. 

3 MobileNet CNN with 
ViT 
[7] 

TON-IIoT • Overall accuracy of 99.99% • Better performance in feature 
extraction and correlation. 

• Biased model performance due 
to the imbalanced dataset. 

4 Combination of 
CNN, LSTM, and 

attentions 
[8] 

UNSW-NB15 • Accuracy of 87% 
• F1-score of 85% 
• Precision of 90% 
• Recall of 81% 

• Allowed the IDS to operate 
proactively, anticipating and 
counteracting emerging attack 
techniques. 

• Enhancing the system's ability 
to detect unknown attacks. 

• Computational complicated. 
• Lower accuracy. 

5 Combination of 
CNN, LSTM, and 

GRU 
[9] 

Electric Vehicle 
Charging 

Station network 
data 

• 100% accuracy in binary 
classification 

• 97.44% accuracy in six-
class classification 

• 96.90% accuracy in fifteen-
class classification 

• High accuracy in detecting 
cyber threats. 

• Allowed to detect complex 
intrusion patterns. 

• Still have limitation on new 
unknown threats. 

6 DCNN 
[10] 

IoTID20 • 99.84% accuracy in binary 
classification 

• 98.12% accuracy in 
multiclass classification 

• 77.55% accuracy in 
multiclass subclassification 

• DCNN model with the Nadam 
optimizer significantly 
enhanced the performance of 
malicious attack detection. 

• Finding the optimal batch sizes 
for different classification tasks, 
which required additional 
experimentation and tuning. 

• Different optimizers (Adam, 
Nadam, and AdaMax) exhibited 
varying performances, 
necessitating extensive testing 
to determine the best one. 

7 Dual CNN 
[11] 

BoT IoT 2020 • 98.04% accuracy 
• 98.09% precision 
• 99.85% recall 
• 98.96% F1-score. 

• Effectively detected intrusions 
by learning hierarchical 
representations and 
uncovering patterns and 
correlations often missed by 
traditional techniques 

• Faced challenges in developing 
mathematical models and 
logical frameworks to verify its 
correctness. 

• Limited in handling unknown 
and complex attacks. 

8 Three-tier CNN 
[12] 

Real time SDN-
IoT dataset 

• Detection rate improvement 
at 25%: 38.72%, at 50%: 
58.00% 

• Decreased failure rate and 
delay with increasing 
number of switches 

• Increased throughput up to 
50% 

• Accuracy in detection of 
attacks: 99% 

• Improved security for IoT 
devices. 

• Detection and prevention of 
intrusions. 

• Feasibility of multi-tier and 
deep learning methods. 

• Overloading problem of 
switches on a large-scale 
environment. 

• Risk of switch overloading. 

 
 

III. RESEARCH METHODOLOGY 
 
A CNN combined with LSTM is proposed for an IIoT IDS 

to overcome the shortcomings of traditional IIoT IDS, 
particularly its high false negative rate. 

The research framework depicted in Fig. 1 functions as a 
strategic guide, ensuring systematic and efficient execution of 

the proposed IDS using CNN with LSTM. The project is 
delineated into four primary phases: Data Pre-processing, 
Reshaping Tabular Data into Pseudo-image, Development of 
Classification Model, and Performance Measurement. Each 
module is tailored to address critical facets of the CNN-based 
IDS development and evaluation process. 
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Fig. 1.  Research Framework of the Proposed IDS using CNNs with LSTM Network 
  

Drop specified 
columns

Pseudo image

Phase 1: Data Pre-processing

Phase 3: Development of Improved CNN based Intrusion Detection System

Phase 4: Accuracy Performance Measurement

Edge IIoT 
dataset

Drop rows with any 
NaN value Remove duplicate rows

Phase 1(a): Feature Selection and Noise Reduction
To identify and exclude columns that may not contribute 
significantly to the performance of IDS. 

Output:
Result dimensionality reduction for input dataset. 

Fine tuning

Training data 
(X)

Testing data 
(y)

Training model

Classification Model

Normal instances
(Testing dataset)

Attack instances 
(Testing dataset)

Confusion 
matrix

Phase 4: Accuracy performance 
measurement
To compare the accuracy performance of the 
proposed system with other deep learning 
system in terms of recall, precision, F1-score, 
and accuracy.

Output:
Confusion matrix is developed.

Evaluation with other 
deep learning model

Select column to encode 
and create dummy 

variables

Binary encoding for each 
dummy variable

Drop the original 
column

Phase 1(b): Dummy Encoding
To convert categorical data into numerical format.

Output:
True and false data are converted into 1 or 0.

Select minority 
classes

Phase 1(c): Random Oversampling
To mitigate the challenge of class imbalance. 

Output:
Balance dataset among all attack types.

Phase 2: Reshape tabular data into Pseudo-image
To reshape the tabular data into Pseudo-image to fit the CNN input.

Output:
X dataset is normalized into scaled feature value. While the 
categorical value in y dataset is normalized into numerical values. 
Then those data reshaped into Pseudo-image.

Phase 3(a): Determine layers in the Model
To construct a CNN+LSTM model.

Output:
Classifies 2 classes (normal and abnormal) and 15 classes 
of attack types..

Phase 3(b): Identify Hyper-parameter 
To complete the CNN model by controlling the behaviour 
and performance of the model.

Output:
Adam optimizer, categorical cross-entropy loss function, 
finally CNN-based classification model is developed. 

Split data into features 
(X) and labels (y)

Apply Random-
oversampler 

Concatenate 
oversampled data with 

original data

Features (X) and 
labels (y)

Normalization process (MinMaxScaler 
and Label Encoding)

Normalized Features 
(X) and labels (y)

Phase 2: Reshaping Tabular Data into Pseudo-image
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A. Data Pre-processing 
 
To ensure the proposed solution, CNN with LSTM is 

effective in IIoT environments, it is planned to be evaluated on 
the famous public benchmark network security datasets, which 
is Edge-IIoT dataset [13]. To build a trained model, a dataset 
with labels is required. For this research, a total of 2219201 data 
points were collected in a CSV file from a real-world IIoT 
environment. It includes normal traffic data from various IoT 
sensors and attack traffic covering 14 different attack types 
(multiclass). Those 2219201 data are also categorized in 2 labels, 
namely 0 and 1, where 0 indicates Normal while 1 indicates 
Attack (binary-class). 

Firstly, the process of feature selection and noise reduction 
involves a meticulous examination of the dataset to identify and 
exclude columns that may not contribute significantly to the 
performance of the IDS, such as time, type of host, type of tcp, 
query number, DNS types, and decoded MQTT. By carefully 
selecting and dropping 18 columns as shown in Table II, this can 
build a more effective and efficient IDS. This approach enhances 
the model’s ability to identify attack patterns while maintaining 
privacy and reducing unnecessary complexity. 

Dummy encoding, also known as one-hot encoding, is a 
technique used to convert categorical data into a numerical 
format that can be utilized by CNN-LSTM model. Features such 
as 'http.request.method', 'http.referer', 'http.request.version', 
'dns.qry.name.len', 'mqtt.conack.flags', 'mqtt.protoname', and 
'mqtt.topic' are inherently categorical, so these columns applied 
dummy encoding to ensure the accurate conversion of 
categorical features into a numerical format, making them 
compatible with the proposed model.  

 
TABLE II.  REASON OF EXCLUDING THE SELECTED FEATURE 

 

No Feature Protocol / 
Type Reason for Exclusion 

1 'frame.time' General 
Timestamp not essential for 
pattern recognition and may 
introduce noise. 

2 'ip.src_host' IP 
Hostnames are redundant with 
IPs and may expose sensitive 
info. 

3 'ip.dst_host' IP Same as above; not useful for 
generalized model learning. 

4 'arp.dst.proto_ipv4' ARP 
Protocol-specific address detail, 
not meaningful in attack pattern 
detection. 

5 'arp.src.proto_ipv4' ARP 
Similar to arp.dst.proto_ipv4, 
minimal contribution to 
classification performance. 

6 'dns.qry.type' DNS 
Query type alone does not 
significantly indicate malicious 
behavior. 

7 'icmp.transmit_tim
estamp' ICMP 

Timing field, high variance and 
not consistently present across 
attacks. 

8 'icmp.unused' ICMP Reserved/unused field, often 
null or irrelevant. 

9 'http.request.uri.qu
ery' HTTP Contains sensitive user data; 

also too variable. 

10 'http.request.full_u
ri' HTTP 

Full URI can leak sensitive info; 
varies too much for pattern 
learning. 

11 'http.tls_port' HTTP/TL
S 

Duplicate of port info; does not 
improve model prediction. 

No Feature Protocol / 
Type Reason for Exclusion 

12 'tcp.dstport' TCP 
Dropped to reduce redundancy; 
similar roles played by other 
TCP features. 

13 'tcp.options' TCP High dimensional and complex 
to encode effectively. 

14 'tcp.payload' TCP Payload content is noisy and 
often encrypted or variable. 

15 'tcp.srcport' TCP As with tcp.dstport, often less 
predictive in isolation. 

16 'udp.port' UDP Removed to reduce dependency 
on specific service ports. 

17 'mqtt.msg_decoded
_as' MQTT Decoded interpretation is 

complex and not directly useful. 

18 'mqtt.msg' MQTT 
Raw MQTT message payload, 
which may contain encrypted or 
irrelevant content. 

 
 

Class imbalance arises when some classes are 
underrepresented compared to others, causing models to be 
biased and perform poorly on minority classes. In this dataset, 
there is a significant imbalance among the different classes, with 
'Normal' having 1615643 instances while others like 'MITM' 
and 'Fingerprinting' have as few as 1214 and 1001 instances, 
respectively. This severe imbalance can lead to biased machine 
learning models that are ineffective at predicting minority 
classes. The method employed is Random Oversampling, it is 
used to balance the dataset, ensuring that the model can learn 
from all classes more effectively and make accurate predictions 
across the board. 

 
B. Reshaping Tabular Data into Pseudo-Image 

 
In order to effectively utilize CNNs for IDS in IIoT 

environments, the raw tabular data must be transformed into a 
format that preserves spatial relationships. This section details 
the preprocessing pipeline, which includes feature normalization, 
label encoding, and restructuring of the dataset into a pseudo-
image representation suitable for CNN input. 

Firstly, the data is partitioned into X and y datasets. The 
dataset consists of 𝑛𝑛 samples and 𝑑𝑑 features, where each sample 
represents an observation from network traffic, and each feature 
corresponds to a specific network attribute. Then, the dataset is 
partitioned into 80% for training and 20% for testing to ensure an 
optimal balance between model learning and evaluation. This 
division is widely adopted in the proposed CNN+LSTM model, 
as a larger training set enhances generalization, while a 
sufficiently large testing set provides a reliable assessment of 
model performance on unseen data. Allocating too little data to 
training may lead to underfitting, whereas an insufficient test set 
could yield unreliable performance metrics. Additionally, 
stratified sampling is applied to maintain class distribution, 
ensuring that both training and testing subsets represent the 
original dataset proportions. The stratification is crucial to ensure 
that the distribution of each attack class remains the same in both 
training and testing sets, preventing potential bias due to 
variations in class proportions. It does not handle class imbalance 
directly but rather maintains a consistent class ratio between the 
two subsets. 

Next, the y dataset is normalized by label encoding. Label 
encoding converts categorical target variables into numerical 
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form. This is essential for CNN algorithms that cannot work 
directly with categorical data, so the y dataset can be compatible 
with the training model. After encoding, the labels are one-hot 
encoded using the categorical encoding. This transformation 
converts each categorical label into a binary vector of length 
(number of attack classes), enabling the network to learn from 
categorical outputs. In addition, X dataset is normalized as well 
by using Min-Max scaling method, because Neural networks are 
sensitive to input feature scaling, and unnormalized features can 
lead to poor convergence and suboptimal performance. 

Finally, the processed data can be reshaped into Pseudo-
images. Since CNNs require 2D spatial input, the 1D feature 
vector of each sample is reshaped into a pseudo-image format. 
This transformation preserves the original feature order while 
introducing a single-channel structure akin to grayscale images. 
The resulting shape (𝑛𝑛,𝑑𝑑) ensures that convolutional layers can 
effectively learn feature correlations. 

 

C. Development of Classification Model 
 

This CNN-LSTM model as shown in Fig. 2 is designed for 
intrusion detection by analyzing images generated from network 

flow data, leveraging both spatial and temporal patterns for 
improved classification of attack types. 

The first stage of the model involves spatial feature extraction 
using two consecutive one-dimensional convolutional layers 
(Conv1D). These layers are responsible for capturing local 
patterns in the network traffic data. The ReLU activation function 
is applied to introduce non-linearity, followed by a global 
average pooling layer that reduces the feature dimensionality 
while retaining critical spatial representations. The input dataset, 
initially structured as tabular data with shape (𝑛𝑛,92,1), is 
expanded to (n,92,3) by replicating the single feature channel 
three times. This transformation enables the network to process 
the input in a manner more similar to RGB image channels, 
allowing CNN layers to better exploit feature relationships. The 
CNN component employs Conv1D to extract local spatial 
dependencies within the input data. Two convolutional layers are 
used with 32 and 64 filters, respectively, each with a kernel size 
of 3 and ReLU activation function. The padding is set to "same" 
to maintain the original input size. 
 

 
Fig. 2.  Model Architecture of Purposed CNN-LSTM Model 

 
 

Following the convolutional layers, Global Average Pooling 
(GAP) is applied to reduce the feature dimensionality while 
preserving spatial information. GAP helps to reduce the risk of 
overfitting compared to fully connected layers and allows for 
more efficient model training. 

Next, the extracted features are reshaped and passed through 
an LSTM layer for temporal feature extraction. The LSTM 
component captures sequential dependencies in network traffic 
patterns, making the model effective in detecting time-
dependent attack behaviors. The LSTM output is then forwarded 
to a fully connected (dense) classification module. 

To ensure IDS models generalize effectively to unseen 
network traffic, dropout layers with a 50% probability are added 
after both the LSTM and fully connected layers. This helps 
prevent overfitting by randomly deactivating neurons during 

training, encouraging the model to learn robust features instead 
of simply memorizing the training data. This is crucial in IIoT 
environments, where network conditions may vary due to 
dynamic workloads and varying attack strategies. 

The classification module consists of multiple dense layers 
interleaved with dropout layers to prevent overfitting. The final 
dense layer applies the ReLU activation function, followed by a 
softmax activation to classify network traffic into either two 
broad categories (normal vs. attack) or 15 specific attack types. 
The Adam optimizer is employed to optimize the model’s 
performance by adjusting the learning rate dynamically. 

This hybrid CNN-LSTM architecture effectively combines 
spatial and temporal feature extraction, making it highly suitable 
for real-time intrusion detection in dynamic IIoT environments. 
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D. Measurement Metrics 
 
In this research, the performance evaluation of the proposed 

model is analyzed by its precision, recall, accuracy, and F1-score. 
For those unfamiliar with these metrics, a higher precision score 
indicates the model's ability to accurately identify the correct 
targets. The confusion matrix summarizes four key components: 
true positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN). In this context, True Positives (TP) refer to 
instances where the model correctly identifies the presence of a 
defect, as confirmed by the ground truth. True Negatives (TN) 
represent cases where the model accurately detects the absence 
of defects. False Positives (FP) occur when the model incorrectly 
predicts a defect that isn't present, while False Negatives (FN) 
represent instances where the model fails to identify an existing 
defect, as indicated by the ground truth. 

The accuracy measures out of those all images, how many of 
it is actually attack and actually normal, which indicates the ratio 
of TP and TN out of all predictions (TP+TN+FP+FN) as shown 
in Eq. 1. The higher accuracy, the better the CNN model in 
detecting the attacks in IIoT. 

The precision measures out of those predicted attacks, how 
many of it is actually attack, which indicates the ratio of TP out 
of all positive predictions (TP+FP) as shown in Eq. 2. The 
precision value may vary based on the model’s confidence 
threshold. 

Recall measures the ability of CNN network to correctly 
detect the image as attack, which indicates the ratio of TP out of 
all predictions (TP+FN) as shown in Eq. 3. The higher recall, the 
better the CNN model in detecting the normal traffic in IIoT. 

F1 score finds the most optimal confidence score threshold 
where precision and recall give the highest F1 score, so it is 
suitable to evaluate the model performance. The F1 score 
calculates the balance between precision and recall as shown in 
Eq. 4. If the value of F1 score is high, precision and recall are 
high, and vice versa. 

 
 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 (1) 

 𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2) 
 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇

 𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 (3) 

 𝐹𝐹1 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2×𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅
𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅

 (4) 
 

IV. RESULT AND DISCUSSION 
 
This chapter presented a comprehensive evaluation of the 

proposed CNN + LSTM model for intrusion detection in Edge-
IIoT networks, focusing on both binary and multi-class 
classification tasks. The performance analysis was conducted 
using key evaluation metrics, including accuracy, precision, 
recall, and F1-score, to assess the model’s capability in 
distinguishing normal and attack traffic, as well as various cyber 
threats. 
 
 
 
 
 
 

A. Result for Data Pre-Processing 
 

By carefully selecting and dropping 18 columns like 
'frame.time', 'ip.src_host', 'ip.dst_host', 'arp.dst.proto_ipv4', 
'arp.src.proto_ipv4', 'dns.qry.type', 'icmp.transmit_timestamp', 
'icmp.unused', 'http.request.uri.query', 'http.request.full_uri', 
'http.tls_port', 'tcp.dstport', 'tcp.options', 'tcp.payload', 
'tcp.srcport', 'udp.port', and 'mqtt.msg_decoded_as.' and 
'mqtt.msg', this approach enhances the model’s ability to 
identify attack patterns while maintaining privacy and reducing 
unnecessary complexity. The updated counts of each attack as 
shown in Fig. 3. 

Fig. 3.  Counts for each Attack Type; (a) Before Feature Selection and Noise 
Reduction; (b) After Feature Selection and Noise Reduction 

 
 

Dummy encoding allows for the retention of all unique 
categories within a feature without imposing any ordinal 
relationship between them. For instance, 'http.request.method' 
might include categories like "GET", "POST", "PUT", etc. 
Dummy encoding ensures that each method is treated distinctly, 
preserving the integrity and specificity of the data. The result of 
counts of each attack before and after dummy encoding remain 
unchanged. 

Then, Random oversampling is used for the dataset. There is 
a significant imbalance among the different classes, with 
'Normal' having 1615643 instances while others like 'MITM' 
and 'Fingerprinting' have as few as 1214 and 1001 instances, 
respectively. This severe imbalance can lead to biased machine 
learning models that are ineffective at predicting minority 
classes. The purpose of the technique used here is to address this 
issue by balancing the dataset, ensuring that the model can learn 
from all classes more effectively and make accurate predictions 
across the board. 

As result shown in Fig. 4, Random Oversampling works by 
randomly duplicating instances from the minority classes until 
the desired balance is achieved. In this code, the specific 
minority classes are specified, which are 'Port_Scanning', 'XSS', 
'Ransomware', 'Fingerprinting', 'MITM' and specified the 
number of desired samples for each class (20000 in this case).  
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The process involves filtering the dataset to isolate these 
minority classes, applying the ‘RandomOverSampler’ to 
generate additional instances, and finally concatenating the 
oversampled data back with the original dataset. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Counts for each Attack Type; (a) Before Random Oversampling (b) 
After Random Oversampling 
 
 
B. Result of Reshaping Tabular Data into Pseudo-Image 

 
The data normalization process seeks to standardize the 

range of independent variables or features in the dataset, 
ensuring that each feature contributes equally to the training of 
the machine learning model. This is especially crucial for 
models that use gradient-based optimization, like CNNs, as it 
prevents features with larger ranges from dominating the 
objective function and skewing the results. 

Data Shapes and Unique Values of X dataset after 
MinMaxScaler: 

• X_train shape = (1541843, 92, 1): The training dataset 
consists of 1541843 samples, each with 92 features. The 
additional dimension (1) indicates that the features are 
treated as single-channel inputs, similar to how 
grayscale images are processed in image recognition 
tasks. 

• X_test shape = (385461, 92, 1): The test dataset consists 
of 385461 samples, each with the same 92 features. 

The shapes of ‘X_train’ and ‘X_test’ confirm that the data 
has been properly structured for input into the CNN, with each 
feature scaled to a range that ensures uniform contribution 
during the model training process. 

Unique Values in Labels of Y dataset from label encoding: 
• Y_train: The unique values in the training labels range 

from 0 to 14, indicating that there are 15 distinct classes 
in the dataset. This is consistent with the classification 
task at hand, where the goal is to categorize each sample 
into one of these 15 classes. 

• Y_test: Similarly, the unique values in the test labels 
range from 0 to 14, confirming that the test set also 
includes samples from all 15 classes. 

The data normalization process ensures that all features in 
the dataset contribute equally to model training by scaling them 
to a consistent range. This prevents features with larger scales 
from dominating the learning process and promotes more stable 
and reliable convergence during training. The shapes of the 

training and test datasets confirm that the data is properly 
structured for input into the CNN. Additionally, label encoding 
converts categorical target variables into a numerical format that 
is compatible with machine learning algorithms, allowing the 
model to effectively learn and classify the samples into their 
respective classes. 

 
C. Experimental Result 

 
1) Binary Classification 

 
The confusion matrix as shown in Table III demonstrates 

that the model performs well in identifying normal network 
traffic, with 272929 true negatives, indicating a strong ability to 
correctly classify benign activity in the IIoT environment. This 
high accuracy in recognizing normal traffic is essential in 
minimizing false alarms, ensuring that legitimate network 
activity is not mistakenly flagged as malicious.  

 
TABLE III.  CONFUSION MATRIX OF BINARY CLASSIFICATION FOR 

NORMAL AND ATTACK LABEL 
 

 Predicted Label 

True 
Label 

Normal (0) 272929 3469 

Attack (1) 107766 1297 

 
 
Additionally, the model successfully detects 1297 attack 

instances, showcasing its capability to recognize cyber threats 
within the Edge-IIoT dataset. This highlights the effectiveness 
of the convolutional and sequential learning approach in 
extracting meaningful patterns from network traffic, enabling 
the detection of potentially harmful activities. The combination 
of CNN and LSTM likely contributes to this strength by 
capturing both spatial and temporal dependencies in the data.   

Furthermore, the relatively low number of false positives 
(3469) suggests that the model maintains a balance in its 
decision-making process, reducing unnecessary security alerts. 
Although a significant number of attack instances (107766) 
were misclassified as normal (false negatives), the model still 
provides a solid foundation for intrusion detection. Its strengths 
in identifying normal traffic and detecting attacks in certain 
cases make it a valuable component for IIoT security. This is 
crucial for practical deployment in IIoT security, where 
excessive false alarms can lead to inefficiencies and unnecessary 
interventions. With these strengths, the model provides a solid 
foundation for further enhancement, potentially making it a 
valuable component in real-world intrusion detection systems. 
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TABLE IV.  EDGE-IIOT BINARY CLASSIFICATION RESULT 
 

Class Model Accuracy 
(%) 

Recall 
(%) 

Precisio
n (%) 

F1-score 
(%) 

Normal 

CNN + 
LSTM 

(Proposed 
Solution) 

71 99 72 83 

AlexNet 
CNN + ViT 

[5] 
50 77 32 25 

MobileNet 
CNN + ViT 

[7] 
54 74 65 78 

Res + CNN 
+ SRU 

[6] 
65 55 34 79 

Attack 

CNN + 
LSTM 

(Proposed 
Solution) 

71 1 27 2 

AlexNet 
CNN + ViT 

[5] 
42 14 18 20 

MobileNet 
CNN + ViT 

[7] 
33 23 6 17 

Res + CNN 
+ SRU 

[6] 
35 15 15 11 

 
 
The comparative analysis in Table IV highlights the 

performance of the proposed CNN + LSTM model against other 
state-of-the-art models for binary classification. The CNN + 
LSTM model outperforms alternative approaches in overall 
accuracy (71%) and demonstrates significantly higher recall (99% 
for normal traffic). This indicates that the model can 
successfully identify most normal instances, reducing false 
alarms in industrial IoT environments. However, the recall for 
attack traffic is considerably lower (1%), suggesting that a large 
proportion of attacks go undetected. Despite this, the precision 
for normal traffic (72%) remains higher than the competing 
models, reinforcing its reliability in recognizing benign traffic. 

Compared to other models, AlexNet CNN + ViT [5] and 
MobileNet CNN + ViT [7] exhibit lower accuracy (50% and 
54%, respectively) and struggle with precision and F1-score, 
particularly in detecting normal traffic. The Res + CNN + SRU 
[6] model shows a moderate performance with 65% accuracy, 
achieving a higher F1-score (79%) for attack traffic but at the 
cost of significantly lower recall (55% for normal and 15% for 
attack traffic). 

Overall, the CNN + LSTM model demonstrates superior 
performance in distinguishing normal traffic and maintaining a 
balanced accuracy score. While it faces challenges in detecting 
attack traffic, its high recall for normal traffic and competitive 
F1-score suggest that it provides a strong foundation for 
industrial IoT intrusion detection. Further enhancements, such 
as feature engineering and hybrid learning approaches, could 
help improve the model’s ability to capture diverse attack 
patterns while maintaining its strengths in recognizing normal 
traffic. 

 
 
 

2) Multiclass Classification 
 

The normalized confusion matrix for multi-class 
classification of the Edge-IIoT dataset presented in Fig. 5 
provides insights into the model’s ability to differentiate 
between various types of network attacks. The matrix presents 
classification performance across multiple attack categories, 
including DDoS (HTTP, ICMP, TCP, UDP), SQL injection, 
ransomware, port scanning, MITM (Man-in-the-Middle), 
fingerprinting, and more, along with normal traffic. The 
diagonal elements represent the correctly classified instances for 
each class, while off-diagonal values indicate misclassifications, 
showing how different attack types may be confused with one 
another. 

The confusion matrix indicates that the model performs well 
in detecting certain attack types, particularly those with a 
stronger presence in the dataset. The darker diagonal values 
suggest that a substantial proportion of samples for each class 
were classified correctly, demonstrating the model’s ability to 
recognize distinguishing features of various cyber threats. For 
instance, MITM, SQL injection, and certain DDoS attacks 
appear to be well-classified, as indicated by their relatively 
higher values along the diagonal. This suggests that the model 
has effectively learned key characteristics of these attacks from 
the training data. 
 

 
Fig. 5.  Confusion Matrix of Multi-class Classification for each Attack 
 
 
However, some degree of misclassification is observed 

between attack types with similar behaviors, as seen in the off-
diagonal values. For example, different DDoS variants (HTTP, 
ICMP, TCP, UDP) exhibit some level of confusion, likely due 
to their overlapping traffic patterns. Similarly, certain scanning 
attacks (port scanning, fingerprinting, vulnerability scanning) 
show misclassification tendencies, which may be attributed to 
their shared methodology of probing network vulnerabilities. 
Despite these challenges, the confusion matrix reflects the 
model’s capacity to identify and differentiate various cyber 
threats, making it a valuable tool for intrusion detection in IIoT 
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environments. Further optimization, such as refining feature 
selection and incorporating attention mechanisms, could further 
enhance classification accuracy. 
 

TABLE V.  EDGE-IIOT MULTI-CLASS CLASSIFICATION RESULT 
 

Class Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Total 
Accuracy 

(%) 
Backdoor 1.21 1.23 1.22 

52.33 

DDoS_HTTP 2.55 2.20 2.36 

DDoS_ICMP 3.63 3.61 3.62 

DDoS_TCP 2.48 3.04 2.73 

DDoS_UDP 6.55 6.61 6.58 

Fingerprinting 0 0 0 

MITM 0 0 0 

Normal 71.71 71.65 71.68 

Password 2.58 5.38 3.48 

Port_scanning 1.18 0.63 0.82 

Ransomware 0.38 0.36 0.37 

SQL_injection 2.36 1.11 1.51 

Uploading 2.26 0.72 1.09 
Vulnerability_scann

er 2.52 2.26 2.38 

XSS 0.73 1.19 0.91 

 
 

Based on Table V, the evaluation of the multi-class 
classification performance for the intrusion detection system on 
the Edge-IIoT dataset provides a comprehensive insight into the 
model’s capability to distinguish between different types of 
cyber threats. The overall accuracy of 52.33% indicates that the 
model demonstrates moderate effectiveness in classifying 
network traffic into distinct attack categories. Among the 
evaluated classes, normal traffic is classified with significantly 
higher precision (71.71%), recall (71.65%), and F1-score 
(71.68%), suggesting that the model is well-optimized for 
distinguishing between benign and malicious activity. This high 
recognition rate for normal instances helps in reducing false 
alarms and improving the reliability of the intrusion detection 
system in real-world industrial IoT environments. 

However, the classification performance varies significantly 
across different attack types. Certain attack categories, such as 
DDoS-related attacks (DDoS_HTTP, DDoS_ICMP, 
DDoS_TCP, and DDoS_UDP), demonstrate relatively higher 
recognition rates, with DDoS_UDP achieving the highest F1-
score (6.58%) among all attack types. This suggests that the 
model is better at detecting high-volume, network-flooding 
attacks compared to more sophisticated, stealthy threats. 
Conversely, classes such as MITM (Man-in-the-Middle) and 
Fingerprinting attacks show zero recall, precision, and F1-score, 
indicating that the model struggles to identify these attack 
patterns. This could be attributed to an imbalance in the dataset, 
where certain attack types might have significantly fewer 
instances, leading to poor generalization. 

Other cyber threats, such as password attacks, SQL injection, 
and vulnerability scanning, exhibit low detection rates, with F1-
scores ranging between 1.09% and 3.48%. This suggests that 
while the model can identify certain attack types to some extent, 
further optimization is required to enhance its ability to 
recognize sophisticated exploits that rely on application-layer 
vulnerabilities rather than sheer network traffic anomalies. The 
relatively low performance across multiple attack categories 
indicates a need for feature refinement, improved model 
architectures, or the integration of additional contextual data to 
enhance classification accuracy across all categories. 

Overall, while the model shows strong capabilities in 
classifying normal traffic and detecting high-volume attacks, it 
faces challenges in recognizing more sophisticated threats, 
particularly low-frequency and evasive attack types. 

 
D. Comparative Analysis of Edge-IIoT Classification Result 

 
The proposed CNN + LSTM model was evaluated using the 

Edge-IIoT dataset and compared against three existing deep 
learning-based intrusion detection models: AlexNet CNN + ViT 
[5], MobileNet CNN + ViT [7], and Res + CNN + SRU [6] to 
further validate the multiclass classification performance. The 
results of this comparison are summarized in Table VI, 
providing insights into the model’s relative performance against 
established approaches. 

 
TABLE VI.  COMPARISON OF EDGE-IIOT CLASSIFICATION RESULT 

 

Model Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

Accuracy 
(%) 

CNN + LSTM 
(Proposed 
Solution) 

52.36 52.33 52.31 52.33 

AlexNet CNN 
+ ViT 

[5] 
48.92 48.75 48.80 48.77 

MobileNet 
CNN + ViT 

[7] 
49.15 49.02 49.08 49.04 

Res + CNN + 
SRU 
[6] 

50.47 50.32 50.29 50.30 

 
 

The CNN + LSTM model achieves a precision of 52.36%, 
recall of 52.33%, F1-score of 52.31%, and accuracy of 52.33%, 
surpassing the competing models in every aspect. Among the 
baseline models, the Res + CNN + SRU approach exhibits the 
highest performance, achieving an accuracy of 50.30%, which 
is still lower than the proposed method. This indicates that the 
hybridization of convolutional and sequential learning 
techniques, as implemented in the CNN + LSTM model, 
enhances intrusion detection capabilities by capturing both 
spatial and temporal features in network traffic data.   

The AlexNet CNN + ViT and MobileNet CNN + ViT 
models demonstrate comparatively lower performance, with 
accuracy values of 48.77% and 49.04%, respectively. The 
decline in performance for these models may be attributed to 
their reliance on vision transformer (ViT) components, which, 
despite their effectiveness in image-related tasks, may not be as 
well-suited for sequential intrusion detection tasks in IIoT 
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networks. Additionally, the computational complexity of ViTs 
may introduce inefficiencies in processing high-dimensional 
network traffic data, leading to suboptimal classification results. 

The radar chart illustrated in Fig. 6 presents a comparative 
analysis of different deep learning models for Edge-IIoT 
classification based on four performance metrics: precision, 
recall, F1-score, and accuracy. The proposed CNN + LSTM 
model achieves the highest performance across all metrics, with 
values around 52.5%, demonstrating its superior ability to 
capture spatial and temporal dependencies for effective intrusion 
detection. The ResNet + CNN + SRU model [6] follows, with 
slightly lower performance but still outperforming the other 
benchmark models. MobileNet CNN + ViT [7] and AlexNet 
CNN + ViT [5] exhibit lower performance, with scores below 
50%, indicating limitations in their capability to extract 
meaningful patterns from IIoT network traffic. The results 
highlight the effectiveness of integrating CNN and LSTM for 
IIoT cybersecurity, reinforcing its robustness in identifying 
cyber threats with improved classification accuracy compared to 
alternative architectures. 
 

Fig. 6.  Comparison of Performance of Deep Learning Model in Edge-IIoT 
 
 
In terms of recall, the proposed CNN + LSTM model also 

outperforms the other models (52.33%), demonstrating its 
capability to detect a higher proportion of actual intrusions. A 
high recall score means that the model effectively captures both 
common and rare attack patterns, reducing the risk of undetected 
cyber threats. The ResNet + CNN + SRU model follows with a 
slightly lower recall, indicating a moderate ability to detect 
threats. However, the MobileNet CNN + ViT and AlexNet CNN 
+ ViT models show lower recall values, suggesting that they 
have a higher tendency to miss certain intrusions, potentially 
leaving IIoT networks vulnerable to undetected cyberattacks. 

The F1-score, which balances precision and recall, is also 
highest for the CNN + LSTM model (52.31%). This confirms 
that the proposed model provides a well-balanced performance 
in reducing both false positives and false negatives, ensuring 
more accurate intrusion detection. The ResNet + CNN + SRU 
model comes in second, demonstrating a reasonable trade-off 

between precision and recall, though it still underperforms 
compared to CNN + LSTM. Meanwhile, the MobileNet CNN + 
ViT and AlexNet CNN + ViT models have the lowest F1-scores, 
highlighting their limitations in achieving a stable balance 
between detecting threats and minimizing false alarms. 

Finally, the proposed CNN + LSTM model achieves the 
highest accuracy (52.33%), reaffirming its overall effectiveness 
in correctly classifying IIoT intrusions. A high accuracy score 
suggests that the model generalizes well across different attack 
types, making it a more robust solution for real-world 
applications. The ResNet + CNN + SRU model ranks second, 
showing competitive performance but still slightly lagging 
behind CNN + LSTM. The MobileNet CNN + ViT and AlexNet 
CNN + ViT models, however, display lower accuracy, 
indicating that they struggle to consistently classify different 
intrusion types. This could be due to limitations in feature 
extraction or an inability to capture sequential dependencies 
effectively. 

Overall, the results highlight the advantages of integrating 
convolutional and recurrent neural networks for IIoT security 
applications. The superior performance of the CNN + LSTM 
model suggests that leveraging both spatial feature extraction 
and sequential dependency modeling enhances intrusion 
detection accuracy. These findings reinforce the effectiveness of 
hybrid deep learning architectures in addressing security 
challenges in IIoT environments and provide a foundation for 
further advancements in intelligent threat detection systems. 

 
V. CONCLUSION 

 
This research offers several key contributions to the field of 

intrusion detection in Edge-IIoT environments by developing a 
hybrid deep learning model that strengthens network security. 
The study presents a CNN and LSTM-based architecture that 
effectively captures both spatial and temporal dependencies in 
network traffic data, tackling the challenges posed by dynamic 
and evolving cyber threats. By integrating convolutional layers 
for feature extraction with sequential learning through LSTMs, 
the model improves the detection of malicious activities while 
maintaining high recognition of normal network behavior. 

This research aimed to enhance the security of IIoT 
environments by developing an advanced IDS capable of 
identifying and analyzing cyber threats. Through comprehensive 
analysis of IIoT network traffic, various types of intrusions and 
malware were examined, including DoS, SQL injection, 
ransomware, and other attack vectors. The study highlighted the 
vulnerabilities present in IIoT devices and the challenges faced 
by traditional IDS in detecting evolving cyber threats. The 
findings emphasize the need for robust detection mechanisms 
that can adapt to dynamic attack patterns while maintaining high 
accuracy and minimal false alarms.  

To address these challenges, this research implemented a 
deep learning-based IDS by integrating CNN and LSTM. The 
CNN component enabled effective spatial feature extraction 
from network traffic data, while LSTM captured temporal 
dependencies, improving the model’s ability to detect anomalies 
in IIoT networks. The proposed CNN-LSTM model was trained 
and tested on a large-scale IIoT dataset, demonstrating its 
capability in differentiating normal and malicious activities. 
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Compared to traditional IDS and other state-of-the-art deep 
learning models, the proposed approach exhibited superior 
performance in identifying network anomalies, highlighting its 
effectiveness in IIoT security applications.   

The evaluation of the intrusion classification model was 
conducted using performance metrics such as accuracy, F1-
score, precision, and recall. The model achieved a binary 
classification accuracy of 71%, successfully detecting normal 
traffic with a recall of 99%, thereby reducing false positives. 
However, the detection of attack traffic, particularly low-
frequency attacks, remains an area for further improvement. In 
multi-class classification, the model demonstrated its capability 
to recognize high-volume attacks, such as Distributed Denial-of-
Service (DDoS), but struggled with more sophisticated attack 
types like Man-in-the-Middle (MITM) and fingerprinting 
attacks. These results indicate that while the proposed model 
enhances IIoT security, additional optimization is required to 
improve its ability to classify diverse cyber threats more 
effectively.   

In conclusion, this research provides a significant 
contribution to IIoT cybersecurity by developing a deep 
learning-based IDS that enhances intrusion detection 
capabilities. The findings underscore the importance of 
leveraging both spatial and temporal analysis for improved 
threat detection. Future enhancements, including feature 
selection refinements, adversarial training, and attention 
mechanisms, could further improve classification performance. 
The proposed model serves as a foundation for advancing IDS 
solutions in IIoT environments, ensuring better protection 
against emerging cyber threats in industrial systems. 

 
VI. FUTURE RESEARCH DIRECTIONS 

 
Future research should focus on enhancing the effectiveness 

of intrusion detection systems in Industrial Internet of Things 
(IIoT) environments by addressing the limitations identified in 
this study. One potential direction is the integration of attention 
mechanisms within the CNN-LSTM framework to improve the 
model's ability to focus on critical network traffic patterns. 
Attention-based models have demonstrated significant success 
in various domains, particularly in natural language processing 
and time-series analysis, and could enhance the detection of 
sophisticated attack patterns that might otherwise be overlooked. 
Additionally, refining feature engineering techniques and 
incorporating domain-specific knowledge into feature selection 
can further optimize the model’s performance. 

Another promising avenue is the exploration of hybrid deep 
learning architectures that combine multiple neural network 
structures to improve classification accuracy. For instance, 
transformer-based models could be integrated with CNN-LSTM 
to capture both local and long-range dependencies in network 
traffic. This could address the challenge of detecting low-
frequency and highly evasive cyber threats such as MITM and 
fingerprinting attacks. Furthermore, leveraging federated 
learning techniques would enable intrusion detection models to 
be trained across multiple IIoT environments without 
compromising data privacy, making the system more adaptable 
to real-world deployment in diverse industrial settings. 

Lastly, future research should focus on improving the 
generalizability of intrusion detection models by expanding 
datasets and incorporating real-world attack scenarios. Current 
models often suffer from performance degradation when applied 
to different IIoT environments due to variations in network 
behavior and attack characteristics. Developing a robust 
anomaly detection framework that can adapt to evolving cyber 
threats through continual learning mechanisms would 
significantly enhance the reliability of intrusion detection 
systems. Additionally, benchmarking against larger and more 
diverse datasets, as well as conducting real-time implementation 
and validation in industrial settings, will provide deeper insights 
into the practical applicability and effectiveness of deep 
learning-based security solutions in IIoT networks. 
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