
International Journal of Innovative Computing 15(1) 109−117

109

An Enhancement of Coverage-based Test Case

Prioritization Technique Using Hybrid Genetic

Algorithm

Mgbemena Stanley Onyebuchi1*, Muhammad Khatibsyarbini2 & Adham Mohd Isa3

Faculty of Computing

Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

Email: stanley.buchim@gmail.com1; khatibsyarbini@utm.my2; mohdadham@utm.my3

Submitted: 19/3/2025. Revised edition: 2/5/2025. Accepted: 4/5/2025. Published online: 27/5/2025
DOI: https://doi.org/10.11113/ijic.v15n1.545

Abstract—Test Case Prioritization plays a defining role in

regression testing by optimizing the ordering of test case execution

for early fault detection. This ensures that modifications to the

code do not adversely affect existing functionalities. TCP is

considered an effective approach in regression testing that

optimizes test execution by ordering test cases according to a

criterion. While previous research works are based on a single

criterion using Genetic or Cuckoo search to solve optimization

problems in TCP, these single metrics limit their effectiveness.

This study proposes a novel hybrid evolutionary algorithm

approach that addresses this limitation by significantly improving

the Average Percentage Fault Detection (APFD) rates in

regression testing. Our adopted approach enhances the strengths

of Cuckoo Search Optimization (CSO) to overcome the limitations

of premature convergence in GA by parameter tuning helps to

overcome the limitations of single algorithm solutions. We

evaluate the performance by incorporating APFD and CE for

improvement in the rate of fault detection and an increase in

coverage effectiveness for a more comprehensive test suite

application. Statistical evaluation using ANOVA strengthens our

resolve for the adopted approach, with significant results

tabulated. Experimental evaluations on Siemens Test Suite

datasets demonstrate how our hybrid approach achieves an

improvement in APFD of 0.271% over both GA and CSO and an

improvement in CE of 6.35% over GA and 6.62%. over CSO

across all test suite datasets. These findings highlight the

applicability of a well-thought-out hybridized evolutionary

algorithm that can be used in TCP to advance software testing

practices.

Keywords—Test Case Prioritization, Genetic Algorithm, Cuckoo

Search Optimization, Hybrid GA-CSO, APFD, CE

I. INTRODUCTION

Regression testing can be applied on a range of software

projects to achieve comprehensive testing. This process is

important for developers to prioritize test suites to ensure old

functionalities are intact without incurring new bugs [1].

Software quality can be assured by ensuring the software goes

through the software testing process [2]. Software plays an

undeniable role in today’s technologically advanced world when

compared to the past two decades, as our lives depend on data

for daily increased productivity. These software systems when

subjected to modifications are often applied to the lines of code

(size) to enhance the abilities or functionalities that can be

performed by the software.

The software testing process is both cost intensive and

iterative, which can be inhibited partly by time just like any

developmental project and this activity is usually conducted at

the maintenance phase [3]. The scheduling of test case execution

in order of need during regression testing allows for a

prioritization approach that increases the testing efficiency of

any modified software. Test Case Prioritization processes can be

enhanced with some criterion, such that developers can conduct

early feasibility study with an expected schedule for project

delivery. The level of coverage necessary to achieve a successful

test cannot truly be always ascertained, as not all test cases

applied reveal faults, besides, not all are utilized [4].

There exist numerous Test Case Prioritization (TCP)

strategies, from evolutionary optimization algorithms to

machine learning methods that have been proposed to resolve

mailto:khatibsyarbini@utm.my

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

110

prioritization problems. Prioritization is then necessary to

enhance optimization in TCP as an efficient ordering

mechanism for test cases. Studies such as [5] – [8], have found

Genetic algorithm (GA) as appropriate to be with beneficial

outcomes around TCP. Hence a good bio-metaheuristic

algorithm adoption within this study to prioritize test cases.

This study aims to evaluate existing Genetic Algorithm (GA)

and Cuckoo Search Optimization (CSO) algorithms for TCP.

Average Percentage Fault Detection (APFD) and Coverage

Effectiveness (CE) are metrics used in the comparison for

evaluation, thereby achieving ordering of test cases.

Furthermore, Analysis of Variance (ANOVA) is applied for a

statistical representation of the normality of the results

generated. The finding will expose future researchers on how to

improve and enhance other known evolutionary algorithms

towards the progress of TCP. The contributions from this

research will broaden the use and application of evolutionary

algorithms to TCP. The specific research questions for this study

deals with:

i. How to hybridize GA to increase the rate of fault

detection in prioritization of test cases in TCP?

ii. How will the hybrid GA be evaluated and verified

for efficiency of use in TCP?

II. RELATED WORKS

The concept of prioritizing test cases has become a very

effective method applicable in software testing as this process

helps place priority on functionality while ensuring that faults

are identified faster where necessary. Different research works

have proposed varying approaches towards improving the

effectiveness of executing test cases.

One of the main objectives of TCP is in the early detection

fault rates, during regression testing. Researchers have explored

different evolutionary algorithms with a view to improving the

effectiveness of TCP. The basic technique for the application of

evolutionary algorithms can be achieved with the effective

simulation of natural system process to achieve optimization.

Study by [9], introduced two search value cognizant TCP

approaches Value Cognizant Fault Detection based (VCFDB-

TCP) and Value-Cognizant Requirement Coverage-Based TCP

(VCRCB-TCP) to improve fault detection and coverage rate of

Test Cases considering that they help enhance the business

values. The study in [10] introduces a Model-driven Engineering

approach TCP to ensure that model input and targeted outputs

remain correct after undergoing modification during testing with

east of faults detected when tested, while ensuring proper

coverage and prioritization of test cases. The study highlighted

time-consumption and larger test suite as a limitation for the

known TCP approaches and with emphasis to this study a 100%

coverage of the test suite was necessary to ensure that the

hybridized algorithm achieved more than local optimum needed

to avoid easy convergence.

The research by [19] adopted an improved strategy by

combining random crossover and dynamic mutation to increase

population diversity for the Travelling Salesman Problem using

GA. To avoid falling into a localized optimal result, the study

ensures that the mutation probability is not limited in size, hence

increased the fault detection. This method resulted in an

improved convergence rate with better optimal solutions from

the improved GA.

Some of the benefits of implementing the code-coverage

TCP model are considered effective in its ability to achieve

higher average percentages of faults detected, such as block

coverage (APBC), statement coverage (APSC), decision

coverage (APDC), and statement coverage (APSC). This

measure helps testers to quickly identify faults. As one of the

most coveted TCP techniques, studies abound in coverage-based

approach with single criteria [13], study suggested a modified

method for coverage-based criterion by introducing the

weighted method for coverage that assesses test cases based on

more than one criterion using empirical studies on three standard

applications while comparing it to existing methods.

The study expands on the inability for a global solution in

TCP while presenting GA and Ant-Colony optimization process

to enhance the prioritization process. A metric for the

measurement of fault coverage of test cases in a test-suite by

considering execution time, and number of iterations towards

improving the coverage of a test suite [15].

A. Overview of GA

Genetic Algorithm became popular in the early 1970s when

the book by John Holland, “Adaptation in Natural and Artificial

Systems” was published, the book was a concept based on the

‘Survival of the fittest’. Genetic algorithms can be categorized

under the family of evolutionary algorithms (ET), with their

basis on the recognition of superior evolvable candidate

solutions referred to as chromosomes. In the ordering of test

cases, one identifiable problem is in the representation of the

chromosomes. The study presented a permutation encoding

solution with a sequence number attached to each test case as a

solution [18]. The mutation operation serves as a protection of

individual strengths for each identifiable generation.

Begin

t ← 0

initialize P(t)

evaluate P(t)

while (not termination condition) do

 begin

 t ← 𝑡 + 1

 select P(t) from P(t – 1) according to evaluation

 crossover P(t) according to crossover rate

 mutate P(t) according to mutation rate

 evaluate P(t)

end

Genetic algorithms in test case prioritization suffer from

elitism-based selection which often leads to premature

convergence on suboptimal solutions that fail to maximize early

fault detection. Also, without proper time-awareness

capabilities, GAs struggle to balance execution time with fault

detection efficiency, leading to test orderings that achieve

coverage inefficiently or detect faults later than necessary.

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

111

B. Overview of CSO

A random optimization algorithm to perform swarm search

was introduced in 2009 by Yang and Deb, named the cuckoo

search algorithm, which is based on the breeding behavior of

certain species of cuckoos. The success rate for the cuckoo

search as an optimization technique is usually increased by its

characteristics and simplicity of implementation fewer

parameters [12]. The process of fine-tuning parameter sizes can

be a determinant of how to actualize and improve on its

performance and exploration ability when realizing the set-out

criteria.

The Levy flight strategy, when employed, is considered the

best core advantage of CS as this allows for proper exploration

of the entire space for a solution. However, it can also be limited

in its slow convergence speed and local exploitation ability [16].

The problems of local optimum and low solution qualities exist

in optimization; the study adapts a hybrid cuckoo search

algorithm to enhance the output [17].

Generate initial population of

n host nests xi (i = 1, 2, …, n)

while (t < MaxGeneration) or (stop criterion)

Get a cuckoo randomly by L’evy flights

 Evaluate its quality/fitness Fi

 Choose a nest among n (say, j) randomly

 If (Fi > Fj),

 replace j by the new solution;

 end

 A fraction (pa) of worse nests

 are abandoned and new ones are built;

keep the best solutions

 (or nests with quality solutions);

Rank the solutions and find the current best

end while

PostProcess results and visualizations

end

Cuckoo Search Optimization Algorithm for TCP is hindered

by the handling of undefined parameters because parameters

unpredictability disrupts the search exploration balance, which

leads to unreliable convergence to suboptimal test case orderings

and lowers adaptability in changing test suites. This makes it

difficult to consistently find the most effective test sequence for

early fault detection.

This research seeks to solve these limitations of GA and

CSO, which can be evaluated by performance metrics such as

APFD and CE.

III. METHODOLOGY

This section explains and justifies the research methodology

used in this research. It also gives light to the experimental

design, experimental context, experimental variables, test case,

and evaluation tools used in this research.

A. Justification of the Hybrid Approach

The adopted hybrid technique algorithm has been shown to

provide significant potential in addressing the weakness of

applying a single objective algorithm. The hybridizing process

enhances the search efficiency as GA provides strong selection

and crossover function while CSO Levy’s light ensures a

diversified search, hence reducing premature convergence and

improving efficiency.

B. Algorithm of the Hybrid GACSO

The flowchart in Fig. 1 represents the Hybrid Genetic

Algorithm Cuckoo Search Algorithm (GACSO). Initially, 50

randomly ranked test suites (nests) from test cases are created.

The fitness value of each solution (nest) in the population is

computed using the given objective function. The best option is

determined by its fitness value.

The Genetic Algorithm Phase begins. In this phase, two

parent nests are chosen, and crossover is used to create a child

nest. Mutation is then applied to the child nest to create variety.

A random nest from the population is selected and its fitness

compared to that of the child nest. If the kid nest has a higher

fitness level, it replaces the random nest. If the kid nest

outperforms the best nest, it replaces it (solution).

The next stage is the Cuckoo Search Optimization (CSO)

phase. The fitness value of a cuckoo egg produced in a random

nest is assessed. The cuckoo nest takes the place of a randomly

chosen nest if its fitness value is higher. The best nest is

replaced by the cuckoo nest if it is superior. The poorest 25%

of nests in the population are swapped out for new ones if the

cuckoo nest does not perform better than these nests. Until the

stopping condition, which is 100 iterations, is reached, the

entire procedure is repeated recursively. The top-ranked test

scenarios were then returned as the optimal solution.

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

112

Fig. 1. The Flowchart for GA-CSO

C. Experiment Design

The Fig. 2 shows the conceptual research framework for the

adopted methodology.

Fig. 2. Research Conceptual Framework

D. Experiment Context

The experiment was conducted in a Linux environment. The

software gcov in the Linux environment is used in this context

to extract, run, and analyse test cases from every benchmark

Siemens dataset. The test case prioritization techniques (GA,

CSO, GACSO) are built in Python 3.12 and executed in the

Linux terminal. The experiment workstation used had an Intel i7

processor and 16GB of RAM.

E. Experiment Variables

In the context of this experiment and study, we have

identified both dependent and independent (controlled)

variables for the study. The controlled variables are test case

datasets from the Software-artifact Infrastructure Repository

(SIR).

The Software-artifact Infrastructure Repository (SIR) is a

repository of benchmark software-related artifacts used in

software testing techniques. This program was created to study

the fault detection capabilities of control-flow and data-flow

coverage criteria. It supports controlled experiments in detail

with program analysis. The Siemens benchmark program

consists of several C programs. The details of the programs are

contained in Table II. The dependent variables are APFD and

CE.

F. Experiment Test Case

In this experiment, five programs were adopted for the

conduct of this experiment and represented in Table I.

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

113

TABLE I. APPLIED SIEMENS PROGRAM

Dataset Name Versions Test Cases Lines of

Code

Fault

Matrix

TCAS 41 1608 138 Different
fault for

Each

version

SCHEDULE 9 2650 299

SCHEDULE2 10 2710 297

PRINTTOKENS 7 4130 483

TOTINFO 23 1053 346

Table I provides details regarding several software testing

benchmark datasets, from the Siemens Program. Five of the

seven siemens program where chosen are the (TCAS,

SCHEDULE, SCHEDULE2, PRINTTOKENS, and TOTINFO)

with their respective metrics. Each program features several

versions, with the TCAS program having the highest count at 41

versions and printTokens the least with 7 versions. The quantity

of test cases shows considerable variation among programs, with

a minimum being 1,053 for Totinfo and the maximum of 4,130

when compared to printTokens. The program constitutes a

sizable amount of LOC with printTokens consisting of 483 lines

being the largest and the smallest at 138 being Tcas. The fault

matrix is indicative of different faults contained within each

version.

TABLE II. COMPLETE SIEMENS PROGRAM TEST SUITE

Program LoC Task Performed Fault

Types

Fault

Metrics

schedule 412 Priority Handler Seeded Yes

schedule2 374 Priority Handlers Seeded Yes
totinfo 565 Statistics Manager Seeded Yes

printTokens 726 Lexical Analyzer Seeded Yes
printTokens2 570 Lexical Analyzer Seeded Yes

replace 564 Pattern

Recognition

Seeded Yes

tcas 173 Collision Detection

System

Seeded Yes

G. Evaluation Tool (Gcov)

Gcov is the coverage analysis infrastructure tool that is

available with the gcc compiler and has been in existence since

the early 1990 (Blasum et al., 2007). Gcov provides coverage

analysis tests in which lines of code have been executed and can

be utilized in the analysis and verification of the code paths.

Coverage is an extensive industrial norm in software

engineering as helps in the process of testing the modification of

a software.

Gcov consists of three steps that helps define its framework

such as the compilation phase, data collection and extraction

phase and the reporting phase. The phases are represented by:

o Compilation phase (‘gcc -00 -o hello -fprofile-

arcs-ftest-coverage hello c”)

o Data collection and extraction phase (“./hello” is

the collecting binary”)

o Reporting phase (‘gcov -a hello c”)

IV. EXPERIMENTS AND RESULTS

The study introduces an evolutionary algorithm adopted for

the research, the GA and CSO algorithms' strengths are

leveraged, resulting the a hybrid GA-CSO evolutionary

algorithm. The proposed hybrid process is then designed to

achieve a better rate of fault detection and maximum coverage

effectiveness while optimizing execution time.

A. Experiment Motivation

The purpose behind developing an enhanced hybrid

evolutionary algorithm comes from identifying the limitations

of the individual algorithms. Furthermore, premature

convergence, inefficient exploration of the search space, and

inability to balance the exploitation and exploration functions

effectively. Hence, limiting their ability to effectively provide

better solutions in a complex software testing scenario.

B. Experiment Setup

The experimental setup for evaluating the proposed hybrid

GA-CSO is designed to ensure a fair and comprehensive

comparison with baseline algorithms. The Siemens Test Suite

from the Software-Artifact Infrastructure Repository (SIR) is

used as the benchmark dataset for evaluating test prioritization

performance. This suite includes seven programs with seeded

faults, enabling an accurate assessment of fault detection

capabilities.

To measure the performance, two key evaluation metrics are

used. The APFD for fault rate detection and CE for

comprehensive coverage of the modified software using SIR test

suite. For statistical analysis of the test, we introduced and used

ANOVA test for normality and to ensure the statistical

significance difference in APFD values. To validate our results,

the choice of metrics APFD and CE adopted was limited for this

study. If replicated by others, time and cost metrics can be

applied when there is availability of resources to measure other

outcomes.

C. Initial Results

Tables III and IV and Figs. 3 and 4 represent initial APFD

and CE performance results of tests conducted on the GA and

CSO algorithms before the hybrid process.

Fig. 3. GA and CSO Initial APFD Chart Result

0.88
0.9

0.92
0.94
0.96
0.98

1

Initial APFD Results

CSO GA

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

114

TABLE III. INITIAL RESULTS APFD RESULTS

APFD Results CSO GA

Totinfo 0.98575 0.983431

Printtoken 0.989844 0.988147

Tcas 0.948051 0.943645

Schedule2 0.922633 0.930519

Schedule 0.956994 0.957239

Fig. 4. GA and CSO Initial CE Results

TABLE IV. INITIAL RESULTS CE RESULTS

CE Results CSO GA

Totinfo 0.884776 0.848684

Printtoken 0.956066 0.955607

Tcas 0.661899 0.666729

Schedule2 0.590416 0.623637

Schedule 0.77221 0.766996

V. RESULTS AND ANALYSIS

A. Hybridized Results

Post-Hybridization results are contained within Tables V and

VI and Figs. 5 and 6:

The comparative analysis of test case prioritization

performance across the five benchmark programs reveals

consistent superiority of the hybrid GACSO approach over

individual GA and CSO implementations.

The Average Percentage of Faults Detection (APFD) results

across the five test suite datasets, as shown in Table V and Fig.

5, demonstrate that the hybrid GA-CSO algorithm consistently

outperforms both GA and CSO algorithms, though with varying

degrees of improvement. For the totinfo test suite dataset, GA-

CSO achieves the highest APFD score of 0.9860, showing a

slight improvement over CSO (0.9857) and GA (0.9834). While

the improvement is modest at 0.026% over CSO and 0.262%

over GA. Similarly, for the printToken test suite dataset, the

hybrid approach leads with an APFD of 0.9906, compared to

CSO at 0.9898 and GA at 0.9881, representing improvements of

0.073% and 0.245% respectively. The Tcas test suite dataset

shows more pronounced differences among the algorithms, with

GA-CSO achieving an APFD of 0.9497, compared to CSO's

0.9481 and GA's 0.9436. The improvement of 0.177% over CSO

and 0.644% over GA. In the schedule test suite dataset, GA-CSO

(0.9586) maintains its lead over CSO (0.9570) and GA (0.9572),

showing improvements of 0.171% and 0.145% respectively. For

the schedule2 test suite dataset, GA-CSO achieves an APFD of

0.9311, compared to CSO's 0.9226 and GA's 0.9305. The

improvement over CSO is relatively significant at 0.908%,

while the advantage over GA is more modest at 0.059%.

Fig. 5. GACSO, GA and CSO APFD Results

On average, the hybrid GA-CSO algorithm demonstrates an

improvement of 0.271% over both GA and CSO across all test

suite datasets.

TABLE V. APFD RESULTS FOR GA-CSO, CSO AND GA

 APFD

Results GA-CSO CSO GA

Totinfo 0.98600781 0.98574994 0.983431

Printtoken 0.990565 0.989844 0.988147

Tcas 0.949727 0.948051 0.943645

Schedule 0.958628 0.956994 0.957239

Schedule2 0.9310638 0.922633 0.930519

The Coverage Effectiveness (CE) results in Table VI and

Fig. 6 analysis reveal that the hybrid GA-CSO algorithm

consistently outperforms GA and CSO algorithms across all five

test suite datasets, showing the effectiveness of combining the

genetic algorithm and cuckoo swarm optimization approaches

for test case prioritization.

0

0.2

0.4

0.6

0.8

1

1.2

Initial CE Results

CSO GA
0.88
0.9

0.92
0.94
0.96
0.98

1

APFD Results

GACSO CSO GA

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

115

For the totinfo test suite dataset, GA-CSO achieves a

Coverage effectiveness value of 0.9641, substantially

outperforming both CSO (0.8848) and GA (0.8487). This

represents an 8.96% improvement over the CSO and a 13.60%

improvement over the GA. The printToken test suite dataset

shows all three algorithms perform at the same high level.

GACSO still maintains the lead at 0.9566, with modest

improvements over CSO (0.9561) and GA (0.9556) at 0.06%

and 0.10%, respectively. In the Tcas test suite dataset, GA-CSO

achieves a CE of 0.7338 compared to CSO's 0.6619 and GA's

0.6667, representing improvements of 10.86% and 10.06%

respectively. Similarly, for the schedule test suite dataset, GA-

CSO (0.7890) outperforms both CSO (0.7722) and GA (0.7670),

showing improvements of 2.17% and 2.86% respectively. In the

schedule2 test suite dataset, we observe that GA-CSO (0.6557)

still outperforms both GA (0.6236) and CSO (0.5904), showing

an 11.06% improvement over CSO and a 5.15% improvement

over GA.

On average, the hybrid GA-CSO algorithm demonstrates

substantial enhancements in Coverage Effectiveness,

outperforming GA by 6.35% and CSO by 6.62%.

Fig. 6. GACSO, GA and CSO CE Results

TABLE VI. CE RESULTS FOR GA-CSO, CSO AND GA

CE Results GA-CSO CSO GA

Totinfo 0.96409769 0.8847764 0.848684

Printtoken 0.95660609 0.95606582 0.9556074

Tcas 0.733769 0.661899 0.666729

Schedule 0.788965 0.77221 0.766996

Schedule2 0.655739 0.590416 0.623637

These significant improvements highlight the effectiveness

of the hybrid approach in maximizing test coverage across

diverse test suite dataset types. The results show clearly that the

hybrid GA-CSO algorithm successfully combines the

exploration capabilities of GA with the exploitation strengths of

CSO, resulting in more comprehensive test coverage overall.

The consistent superiority of GA-CSO across all test suite

datasets, regardless of their complexity or the relative

performance of the standalone algorithms, confirms that the

hybridization strategy represents a robust advancement in test

coverage optimization techniques.

B. Normality Test Using Analysis of Variance (ANOVA)

To assess the normality of the data distributions, Analysis of

Variance (ANOVA), also known as the Shapiro-Wilk test, was

conducted. The results is shown in Table VII. The null

hypothesis (“H₀”) of this test states that the data follows a normal

distribution, while the alternative hypothesis (“H₁”) indicates

deviation from normality. A p-value greater than 0.05 suggests

that the data is likely to be normally distributed, whereas a p-

value less than 0.05 indicates a significant difference from

normality.

TABLE VII. THE ANOVA (SHAPIRO-WILK TEST) RESULT

FOR THE TEST SUITE

 Shapiro-Wilk

df p-value

totinfo_APFD_GA-CSO 29 0.118

totinfo_APFD_cso 29 0.161

totinfo_APFD_ga 29 0.012

schedule2_APFD_ga 29 0.486

printtoken_APFD_GA-CSO 29 0.707

printtoken_APFD_cso 29 0.047

printtoken_APFD_ga 29 0.001

tcas_APFD_GA-CSO 29 0.076

tcas_APFD_CSO 29 0.516

tcas_APFD_ga 29 0.281

schedule2_APFD_GA-CSO 29 0.408

schedule2_APFD_CSO 29 0.387

C. Interpretation of the Results

The ANOVA (Shapiro-Wilk test) results indicate that the

majority of datasets exhibit normality, as their respective p-

values exceed the 0.05 significance threshold. Specifically,

datasets totinfo_APFD_GA-CSO (p = 0.118),

totinfo_APFD_cso (p = 0.161), schedule2_APFD_ga (p =

0.486), printtoken_APFD_GA-CSO (p = 0.707),

tcas_APFD_GA-CSO (p = 0.076), tcas_APFD_CSO (p =

0.516), tcas_APFD_ga (p = 0.281), schedule2_APFD_GA-

CSO (p = 0.408), and schedule2_APFD_CSO (p= 0.387) do

not show strong evidence of non-normality.

0
0.2
0.4
0.6
0.8
1

1.2

CE Results

GACSO CSO GA

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

116

TABLE VIII. TUKEY HSD RESULT FOR GA-CSO

Mean

Difference

Std Error p value

GACSO CSO 0.039930* 0.012634673198570 0.005

GA 0.058206 0.012634673198570 0.000

The Tukey HSD test aided in identifying value-based

difference when multiple test case prioritization techniques are

applied to programs such as the Siemens Suite, hence

highlighting the statistical significance of the hybridized

algorithm in comparison to others. The Tukey HSD results is

shown in Table VIII.

D. Summary

The ANOVA (Shapiro-Wilk) tests aids in verification of

data distribution patterns to understand its normality. Most of

the tested datasets showed normal distribution patterns as their

corresponding p-values exceeded 0.05. Data points on

printtoken_APFD_CSO, totinfo_APFD and

printtoken_APFD_ga showed deviations from normality with p-

values 0.047, 0.012 and 0.001 respectively. The chapter uses a

well-thought-out analytical framework in our proposed hybrid

approach to ensure it performs well in fault detection rates and

coverage efficiency, and computational. The statistical test was

necessary to highlight comparison done on multiple groups,

thereby identifying optimal ranges from search-based

algorithms.

VI. CONCLUSION AND FUTURE WORKS

The goal of this study is to identify and conduct a thorough

search on the existing body of works and techniques used in

TCP, as this will prove useful when identifying the limitations

in software testing. To address this limitation, we identified a

possible algorithm enhancement technique that hybridizes GA

and CSO. In doing so, we were able to increase the APFD rates

by enhancing optimization rate and increasing coverage of the

test suite using CE as metrics to ensure better than optimum

results delivery. Furthermore, the ANOVA and Tukey HSD

metrics were applied to confirm statistical outcomes showed

normalization in results and performance. This ensures the

proposed algorithm can be applied on broader software systems

by developers and testers alike. The bias from the dataset

selections come from the Siemens programs size do not

represent larger industrial scale applications. The parameter

tuning performed to successfully conduct the testing might be

restrictive to other program languages.

Future work can be focused on the use of real-world projects,

improved parameter tuning to accommodate a hybridized GA

with other evolutionary algorithms and complex datasets, as

well as time monitoring with other APFD metrics for a increased

outcomes.

ACKNOWLEDGMENT

The work is fully funded by Fundamental Research Grant

Scheme, vote number 23H61 under Universiti Teknologi

Malaysia (UTM). We would also like to thank the members of

Embedded & Real- Time Software Engineering Laboratory

(EReTSEL), Faculty of Computing, UTM for their feedback and

continuous support.

CONFLICTS OF INTEREST

The author(s) declare(s) that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] Ling, X., Agrawal, R., & Menzies, T. (2022). How Different

is Test Case Prioritization for Open and Closed Source

Projects? IEEE Transactions on Software Engineering, 48(7),

2526–2540.

[2] Roongruangsuwan, S., & Daengdej, J. (2005). Test Case

Prioritization Techniques. Journal of Theoretical and Applied

Information Technology, 45–60.

[3] Samad, A., Mahdin, H., Kazmi, R., & Ibrahim, R. (2021).

Regression Test Case Prioritization: A Systematic Literature

Review. IJACSA) International Journal of Advanced

Computer Science and Applications, 12(2), 655–663.

[4] Chekam, T. T., Papadakis, M., Le Traon, Y., & Harman, M.

(2017). An Empirical Study on Mutation, Statement and

Branch Coverage Fault Revelation That Avoids the Unreliable

Clean Program Assumption. 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE),

597–608.

[5] Deb, K., Pratab, S., Agarwal, S., & Meyarivan, T. (2002). A

Fast and Elitist Multiobjective Genetic Algorithm: NGSA-II.

IEEE Transactions on Evolutionary Computing, 6(2), 182–

197.

[6] Kaur, A., & Goyal, S. (2011). A Genetic Algorithm for Fault-

based Regression Test Case Prioritization. International

Journal of Computer Applications, 32(8), 975–8887.

[7] Yuan, F., Bian, Y., Li, Z., & Zhao, R. (2015, September).

Epistatic Genetic Algorithm for Test Case Prioritization. In

International Symposium on Search based Software

Engineering (pp. 109–124). Springer, Cham.

[8] Guariso, G., & Sangiorgio, M. (2020). Improving the

Performance of Multiobjective Genetic Algorithms: An

Elitism-based Approach. Information 2020, 11(12), 587.

[9] Ahmed, F. S., Majeed, A., Khan, T. A. (2023). Value-based

Test Case Prioritization for Regression Testing using Genetic

Algorithms. Computers, Materials & Continua, 74(1), 2211–

2238.

[10] Iqbal, S., & Al-Azzoni, I. (2021). Test Case Prioritization for

Model Transformations. 6324–6338.

[11] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, and R.

Tumeng, (2018). Testcase Prioritization Approaches in

Regression Testing: A Systematic Literaturereview. Inf. Softw.

Technol., 93, 74–93.

[12] Sharma, A., Sharma, A., Chowdary, V., Srivastava, A., &

Joshi, P. (2021). Cuckoo Search Algorithm: A Review of

Recent Variants and Engineering Applications. Studies in

Computational Intelligence, 916, 177–194.

[13] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002a).

Test Case Prioritization: A Family of Empirical Studies. IEEE

Transactions on Software Engineering, 28(2), 159–182.

[14] Prakash. (2013). Weighted Method for Coverage-based Test

Case Prioritization. Journal of Theoretical and Applied

Information Technology, 56(2), 235–243.

[15] Akila, T. K., & Arunachalam, M. (2022). Test Case

Prioritization using Modified Genetic Algorithm and Ant

Mgbemena Stanley Onyebuchi et al. / IJIC Vol. 15 No. 1 (2025) 109−117

117

Colony Optimization for Regression Testing. International

Journal of Advanced Technology and Engineering

Exploration, 9(88), 384–400.

[16] Xiong, Y., Zou, Z., & Cheng, J. (2023). Cuckoo Search

Algorithm based on Cloud Model nd Its Application. Scientific

Reports |, 13, 10098.

[17] Bajaj, A., & Sangwan, O. P. (2021). Discrete Cuckoo Search

Algorithms for Test Case Prioritization. Applied Soft

Computing, 110.

[18] Bajaj, A., & Sangwan, O. P. (2019). A Systematic Literature

Review of Test Case Prioritization using Genetic Algorithms.

IEEE Access, 7, 126355–126375.

[19] Xu, J., Pei, L., & Zhu, R. Z. (2018). Application of a Genetic

Algorithm with Random Crossover and Dynamic Mutation on

the Travelling Salesman Problem. Procedia Computer

Science, 131, 937–945.

