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Abstract—Test Case Prioritization plays a defining role in 

regression testing by optimizing the ordering of test case execution 

for early fault detection. This ensures that modifications to the 

code do not adversely affect existing functionalities. TCP is 

considered an effective approach in regression testing that 

optimizes test execution by ordering test cases according to a 

criterion.  While previous research works are based on a single 

criterion using Genetic or Cuckoo search to solve optimization 

problems in TCP, these single metrics limit their effectiveness. 

This study proposes a novel hybrid evolutionary algorithm 

approach that addresses this limitation by significantly improving 

the Average Percentage Fault Detection (APFD) rates in 

regression testing. Our adopted approach enhances the strengths 

of Cuckoo Search Optimization (CSO) to overcome the limitations 

of premature convergence in GA by parameter tuning helps to 

overcome the limitations of single algorithm solutions. We 

evaluate the performance by incorporating APFD and CE for 

improvement in the rate of fault detection and an increase in 

coverage effectiveness for a more comprehensive test suite 

application. Statistical evaluation using ANOVA strengthens our 

resolve for the adopted approach, with significant results 

tabulated. Experimental evaluations on Siemens Test Suite 

datasets demonstrate how our hybrid approach achieves an 

improvement in APFD of 0.271% over both GA and CSO and an 

improvement in CE of 6.35% over GA and 6.62%. over CSO 

across all test suite datasets. These findings highlight the 

applicability of a well-thought-out hybridized evolutionary 

algorithm that can be used in TCP to advance software testing 

practices.  

Keywords—Test Case Prioritization, Genetic Algorithm, Cuckoo 

Search Optimization, Hybrid GA-CSO, APFD, CE 

I. INTRODUCTION

Regression testing can be applied on a range of software 

projects to achieve comprehensive testing. This process is 

important for developers to prioritize test suites to ensure old 

functionalities are intact without incurring new bugs [1]. 

Software quality can be assured by ensuring the software goes 

through the software testing process [2]. Software plays an 

undeniable role in today’s technologically advanced world when 

compared to the past two decades, as our lives depend on data 

for daily increased productivity. These software systems when 

subjected to modifications are often applied to the lines of code 

(size) to enhance the abilities or functionalities that can be 

performed by the software. 

The software testing process is both cost intensive and 

iterative, which can be inhibited partly by time just like any 

developmental project and this activity is usually conducted at 

the maintenance phase [3]. The scheduling of test case execution 

in order of need during regression testing allows for a 

prioritization approach that increases the testing efficiency of 

any modified software. Test Case Prioritization processes can be 

enhanced with some criterion, such that developers can conduct 

early feasibility study with an expected schedule for project 

delivery. The level of coverage necessary to achieve a successful 

test cannot truly be always ascertained, as not all test cases 

applied reveal faults, besides, not all are utilized [4].  

There exist numerous Test Case Prioritization (TCP) 

strategies, from evolutionary optimization algorithms to 

machine learning methods that have been proposed to resolve 
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prioritization problems. Prioritization is then necessary to 

enhance optimization in TCP as an efficient ordering 

mechanism for test cases. Studies such as [5] – [8], have found 

Genetic algorithm (GA) as appropriate to be with beneficial 

outcomes around TCP. Hence a good bio-metaheuristic 

algorithm adoption within this study to prioritize test cases. 

This study aims to evaluate existing Genetic Algorithm (GA) 

and Cuckoo Search Optimization (CSO) algorithms for TCP. 

Average Percentage Fault Detection (APFD) and Coverage 

Effectiveness (CE) are metrics used in the comparison for 

evaluation, thereby achieving ordering of test cases. 

Furthermore, Analysis of Variance (ANOVA) is applied for a 

statistical representation of the normality of the results 

generated. The finding will expose future researchers on how to 

improve and enhance other known evolutionary algorithms 

towards the progress of TCP. The contributions from this 

research will broaden the use and application of evolutionary 

algorithms to TCP. The specific research questions for this study 

deals with: 

 

i.  How to hybridize GA to increase the rate of fault 

detection in prioritization of test cases in TCP? 

 

ii. How will the hybrid GA be evaluated and verified 

for efficiency of use in TCP? 

  

II. RELATED WORKS 

 

The concept of prioritizing test cases has become a very 

effective method applicable in software testing as this process 

helps place priority on functionality while ensuring that faults 

are identified faster where necessary. Different research works 

have proposed varying approaches towards improving the 

effectiveness of executing test cases.  

One of the main objectives of TCP is in the early detection 

fault rates, during regression testing. Researchers have explored 

different evolutionary algorithms with a view to improving the 

effectiveness of TCP. The basic technique for the application of 

evolutionary algorithms can be achieved with the effective 

simulation of natural system process to achieve optimization. 

Study by [9], introduced two search value cognizant TCP 

approaches Value Cognizant Fault Detection based (VCFDB-

TCP) and Value-Cognizant Requirement Coverage-Based TCP 

(VCRCB-TCP) to improve fault detection and coverage rate of 

Test Cases considering that they help enhance the business 

values. The study in [10] introduces a Model-driven Engineering 

approach TCP to ensure that model input and targeted outputs 

remain correct after undergoing modification during testing with 

east of faults detected when tested, while ensuring proper 

coverage and prioritization of test cases. The study highlighted 

time-consumption and larger test suite as a limitation for the 

known TCP approaches and with emphasis to this study a 100% 

coverage of the test suite was necessary to ensure that the 

hybridized algorithm achieved more than local optimum needed 

to avoid easy convergence.  

The research by [19] adopted an improved strategy by 

combining random crossover and dynamic mutation to increase 

population diversity for the Travelling Salesman Problem using 

GA. To avoid falling into a localized optimal result, the study 

ensures that the mutation probability is not limited in size, hence 

increased the fault detection. This method resulted in an 

improved convergence rate with better optimal solutions from 

the improved GA. 

Some of the benefits of implementing the code-coverage 

TCP model are considered effective in its ability to achieve 

higher average percentages of faults detected, such as block 

coverage (APBC), statement coverage (APSC), decision 

coverage (APDC), and statement coverage (APSC). This 

measure helps testers to quickly identify faults. As one of the 

most coveted TCP techniques, studies abound in coverage-based 

approach with single criteria [13], study suggested a modified 

method for coverage-based criterion by introducing the 

weighted method for coverage that assesses test cases based on 

more than one criterion using empirical studies on three standard 

applications while comparing it to existing methods. 

The study expands on the inability for a global solution in 

TCP while presenting GA and Ant-Colony optimization process 

to enhance the prioritization process. A metric for the 

measurement of fault coverage of test cases in a test-suite by 

considering execution time, and number of iterations towards 

improving the coverage of a test suite [15]. 

 

A. Overview of GA 

 

Genetic Algorithm became popular in the early 1970s when 

the book by John Holland, “Adaptation in Natural and Artificial 

Systems” was published, the book was a concept based on the 

‘Survival of the fittest’. Genetic algorithms can be categorized 

under the family of evolutionary algorithms (ET), with their 

basis on the recognition of superior evolvable candidate 

solutions referred to as chromosomes. In the ordering of test 

cases, one identifiable problem is in the representation of the 

chromosomes. The study presented a permutation encoding 

solution with a sequence number attached to each test case as a 

solution [18]. The mutation operation serves as a protection of 

individual strengths for each identifiable generation.  

 

Begin 

t ←  0 

initialize P(t) 

evaluate P(t) 

while (not termination condition) do 

 begin 

 t ← 𝑡 + 1 

 select P(t) from P(t – 1) according to evaluation 

 crossover P(t) according to crossover rate 

 mutate P(t) according to mutation rate 

 evaluate P(t) 

end 

 

Genetic algorithms in test case prioritization suffer from 

elitism-based selection which often leads to premature 

convergence on suboptimal solutions that fail to maximize early 

fault detection. Also, without proper time-awareness 

capabilities, GAs struggle to balance execution time with fault 

detection efficiency, leading to test orderings that achieve 

coverage inefficiently or detect faults later than necessary. 
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B. Overview of CSO 

 

A random optimization algorithm to perform swarm search 

was introduced in 2009 by Yang and Deb, named the cuckoo 

search algorithm, which is based on the breeding behavior of 

certain species of cuckoos. The success rate for the cuckoo 

search as an optimization technique is usually increased by its 

characteristics and simplicity of implementation fewer 

parameters [12]. The process of fine-tuning parameter sizes can 

be a determinant of how to actualize and improve on its 

performance and exploration ability when realizing the set-out 

criteria.  

The Levy flight strategy, when employed, is considered the 

best core advantage of CS as this allows for proper exploration 

of the entire space for a solution. However, it can also be limited 

in its slow convergence speed and local exploitation ability [16]. 

The problems of local optimum and low solution qualities exist 

in optimization; the study adapts a hybrid cuckoo search 

algorithm to enhance the output [17]. 

 

Generate initial population of  

n host nests xi (i = 1, 2, …, n) 

while (t < MaxGeneration) or (stop criterion) 

Get a cuckoo randomly by L’evy flights 

 Evaluate its quality/fitness Fi 

 Choose a nest among n (say, j) randomly 

 If (Fi > Fj),  

  replace j by the new solution; 

  end 

 A fraction (pa) of worse nests 

 are abandoned and new ones are built; 

keep the best solutions 

 (or nests with quality solutions); 

Rank the solutions and find the current best 

end while 

PostProcess results and visualizations 

end 

 

Cuckoo Search Optimization Algorithm for TCP is hindered 

by the handling of undefined parameters because parameters 

unpredictability disrupts the search exploration balance, which 

leads to unreliable convergence to suboptimal test case orderings 

and lowers adaptability in changing test suites. This makes it 

difficult to consistently find the most effective test sequence for 

early fault detection. 

This research seeks to solve these limitations of GA and 

CSO, which can be evaluated by performance metrics such as 

APFD and CE. 

 

III. METHODOLOGY   

 

This section explains and justifies the research methodology 

used in this research. It also gives light to the experimental 

design, experimental context, experimental variables, test case, 

and evaluation tools used in this research. 

 

 

 

A. Justification of the Hybrid Approach 

 

The adopted hybrid technique algorithm has been shown to 

provide significant potential in addressing the weakness of 

applying a single objective algorithm. The hybridizing process 

enhances the search efficiency as GA provides strong selection 

and crossover function while CSO Levy’s light ensures a 

diversified search, hence reducing premature convergence and 

improving efficiency. 

 

B. Algorithm of the Hybrid GACSO 

 

The flowchart in Fig. 1 represents the Hybrid Genetic 

Algorithm Cuckoo Search Algorithm (GACSO). Initially, 50 

randomly ranked test suites (nests) from test cases are created. 

The fitness value of each solution (nest) in the population is 

computed using the given objective function. The best option is 

determined by its fitness value.  

The Genetic Algorithm Phase begins. In this phase, two 

parent nests are chosen, and crossover is used to create a child 

nest. Mutation is then applied to the child nest to create variety. 

A random nest from the population is selected and its fitness 

compared to that of the child nest. If the kid nest has a higher 

fitness level, it replaces the random nest. If the kid nest 

outperforms the best nest, it replaces it (solution). 

The next stage is the Cuckoo Search Optimization (CSO) 

phase. The fitness value of a cuckoo egg produced in a random 

nest is assessed. The cuckoo nest takes the place of a randomly 

chosen nest if its fitness value is higher. The best nest is 

replaced by the cuckoo nest if it is superior. The poorest 25% 

of nests in the population are swapped out for new ones if the 

cuckoo nest does not perform better than these nests. Until the 

stopping condition, which is 100 iterations, is reached, the 

entire procedure is repeated recursively. The top-ranked test 

scenarios were then returned as the optimal solution. 
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Fig. 1. The Flowchart for GA-CSO 

 

 

C. Experiment Design 

 

The Fig. 2 shows the conceptual research framework for the 

adopted methodology.   

 

 
Fig. 2. Research Conceptual Framework 

 

 

D. Experiment Context  

 

The experiment was conducted in a Linux environment. The 

software gcov in the Linux environment is used in this context 

to extract, run, and analyse test cases from every benchmark 

Siemens dataset. The test case prioritization techniques (GA, 

CSO, GACSO) are built in Python 3.12 and executed in the 

Linux terminal. The experiment workstation used had an Intel i7 

processor and 16GB of RAM. 

 

E. Experiment Variables  

 

In the context of this experiment and study, we have 

identified both dependent and independent (controlled) 

variables for the study. The controlled variables are test case 

datasets from the Software-artifact Infrastructure Repository 

(SIR).  

The Software-artifact Infrastructure Repository (SIR) is a 

repository of benchmark software-related artifacts used in 

software testing techniques.  This program was created to study 

the fault detection capabilities of control-flow and data-flow 

coverage criteria. It supports controlled experiments in detail 

with program analysis. The Siemens benchmark program 

consists of several C programs. The details of the programs are 

contained in Table II. The dependent variables are APFD and 

CE.  

 

F. Experiment Test Case 

 

In this experiment, five programs were adopted for the 

conduct of this experiment and represented in Table I.  
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TABLE I.  APPLIED SIEMENS PROGRAM  
 

Dataset Name Versions Test Cases Lines of 

Code 

Fault 

Matrix 

TCAS 41 1608 138 Different 
fault for 

Each 

version 

SCHEDULE 9 2650 299 

SCHEDULE2 10 2710 297 

PRINTTOKENS 7 4130 483  

TOTINFO 23 1053 346  

 

 

Table I provides details regarding several software testing 

benchmark datasets, from the Siemens Program. Five of the 

seven siemens program where chosen are the (TCAS, 

SCHEDULE, SCHEDULE2, PRINTTOKENS, and TOTINFO) 

with their respective metrics. Each program features several 

versions, with the TCAS program having the highest count at 41 

versions and printTokens the least with 7 versions. The quantity 

of test cases shows considerable variation among programs, with 

a minimum being 1,053 for Totinfo and the maximum of 4,130 

when compared to printTokens. The program constitutes a 

sizable amount of LOC with printTokens consisting of 483 lines 

being the largest and the smallest at 138 being Tcas. The fault 

matrix is indicative of different faults contained within each 

version. 

 
TABLE II.  COMPLETE SIEMENS PROGRAM TEST SUITE  

 
Program  LoC Task Performed Fault 

Types 

Fault 

Metrics 

schedule 412 Priority Handler Seeded Yes 

schedule2 374 Priority Handlers Seeded Yes 
totinfo 565 Statistics Manager Seeded Yes 

printTokens 726 Lexical Analyzer Seeded Yes 
printTokens2 570 Lexical Analyzer Seeded Yes 

replace 564 Pattern 

Recognition 

Seeded Yes 

tcas 173 Collision Detection 

System 

Seeded Yes 

 

 

G. Evaluation Tool (Gcov) 
 

Gcov is the coverage analysis infrastructure tool that is 

available with the gcc compiler and has been in existence since 

the early 1990 (Blasum et al., 2007). Gcov provides coverage 

analysis tests in which lines of code have been executed and can 

be utilized in the analysis and verification of the code paths. 

Coverage is an extensive industrial norm in software 

engineering as helps in the process of testing the modification of 

a software.  

Gcov consists of three steps that helps define its framework 

such as the compilation phase, data collection and extraction 

phase and the reporting phase. The phases are represented by: 
 

o Compilation phase (‘gcc -00 -o hello  -fprofile-

arcs-ftest-coverage hello c”) 

o Data collection and extraction phase (“./hello” is 

the collecting binary”) 

o Reporting phase (‘gcov -a hello c”) 

 

 

 

IV. EXPERIMENTS AND RESULTS    

 

The study introduces an evolutionary algorithm adopted for 

the research, the GA and CSO algorithms' strengths are 

leveraged, resulting the a hybrid GA-CSO evolutionary 

algorithm. The proposed hybrid process is then designed to 

achieve a better rate of fault detection and maximum coverage 

effectiveness while optimizing execution time.   

 

A. Experiment Motivation 

 

The purpose behind developing an enhanced hybrid 

evolutionary algorithm comes from identifying the limitations 

of the individual algorithms. Furthermore, premature 

convergence, inefficient exploration of the search space, and 

inability to balance the exploitation and exploration functions 

effectively. Hence, limiting their ability to effectively provide 

better solutions in a complex software testing scenario. 

 

B. Experiment Setup  

 

The experimental setup for evaluating the proposed hybrid 

GA-CSO is designed to ensure a fair and comprehensive 

comparison with baseline algorithms. The Siemens Test Suite 

from the Software-Artifact Infrastructure Repository (SIR) is 

used as the benchmark dataset for evaluating test prioritization 

performance. This suite includes seven programs with seeded 

faults, enabling an accurate assessment of fault detection 

capabilities. 

To measure the performance, two key evaluation metrics are 

used. The APFD for fault rate detection and CE for 

comprehensive coverage of the modified software using SIR test 

suite. For statistical analysis of the test, we introduced and used 

ANOVA test for normality and to ensure the statistical 

significance difference in APFD values. To validate our results, 

the choice of metrics APFD and CE adopted was limited for this 

study. If replicated by others, time and cost metrics can be 

applied when there is availability of resources to measure other 

outcomes.  

 

C. Initial Results   
 

Tables III and IV and Figs. 3 and 4 represent initial APFD 

and CE performance results of tests conducted on the GA and 

CSO algorithms before the hybrid process.  
 

 
 

Fig. 3. GA and CSO Initial APFD Chart Result 
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TABLE III.  INITIAL RESULTS APFD RESULTS   
 

APFD Results  CSO GA 

Totinfo 0.98575 0.983431 

Printtoken 0.989844 0.988147 

Tcas 0.948051 0.943645 

Schedule2 0.922633 0.930519 

Schedule 0.956994 0.957239 

 

 
 

Fig. 4. GA and CSO Initial CE Results 

 
TABLE IV.  INITIAL RESULTS CE RESULTS   

 

CE Results CSO GA 

Totinfo 0.884776 0.848684 

Printtoken 0.956066 0.955607 

Tcas 0.661899 0.666729 

Schedule2 0.590416 0.623637 

Schedule 0.77221 0.766996 

 

V. RESULTS AND ANALYSIS 

 

A. Hybridized Results   

 

Post-Hybridization results are contained within Tables V and 

VI and Figs. 5 and 6:  

The comparative analysis of test case prioritization 

performance across the five benchmark programs reveals 

consistent superiority of the hybrid GACSO approach over 

individual GA and CSO implementations. 

The Average Percentage of Faults Detection (APFD) results 

across the five test suite datasets, as shown in Table V and Fig. 

5, demonstrate that the hybrid GA-CSO algorithm consistently 

outperforms both GA and CSO algorithms, though with varying 

degrees of improvement. For the totinfo test suite dataset, GA-

CSO achieves the highest APFD score of 0.9860, showing a 

slight improvement over CSO (0.9857) and GA (0.9834). While 

the improvement is modest at 0.026% over CSO and 0.262% 

over GA. Similarly, for the printToken test suite dataset, the 

hybrid approach leads with an APFD of 0.9906, compared to 

CSO at 0.9898 and GA at 0.9881, representing improvements of 

0.073% and 0.245% respectively. The Tcas test suite dataset 

shows more pronounced differences among the algorithms, with 

GA-CSO achieving an APFD of 0.9497, compared to CSO's 

0.9481 and GA's 0.9436. The improvement of 0.177% over CSO 

and 0.644% over GA. In the schedule test suite dataset, GA-CSO 

(0.9586) maintains its lead over CSO (0.9570) and GA (0.9572), 

showing improvements of 0.171% and 0.145% respectively. For 

the schedule2 test suite dataset, GA-CSO achieves an APFD of 

0.9311, compared to CSO's 0.9226 and GA's 0.9305. The 

improvement over CSO is relatively significant at 0.908%, 

while the advantage over GA is more modest at 0.059%.  
 

 
 

Fig. 5. GACSO, GA and CSO APFD Results  

 

 

On average, the hybrid GA-CSO algorithm demonstrates an 

improvement of 0.271% over both GA and CSO across all test 

suite datasets.  
 

TABLE V.   APFD RESULTS FOR GA-CSO, CSO AND GA 
 

 APFD 

Results  GA-CSO CSO GA 

Totinfo 0.98600781 0.98574994 0.983431 

Printtoken 0.990565 0.989844 0.988147 

Tcas 0.949727 0.948051 0.943645 

Schedule 0.958628 0.956994 0.957239 

Schedule2 0.9310638 0.922633 0.930519 

 

 

The Coverage Effectiveness (CE) results in Table VI and 

Fig. 6 analysis reveal that the hybrid GA-CSO algorithm 

consistently outperforms GA and CSO algorithms across all five 

test suite datasets, showing the effectiveness of combining the 

genetic algorithm and cuckoo swarm optimization approaches 

for test case prioritization. 
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For the totinfo test suite dataset, GA-CSO achieves a 

Coverage effectiveness value of 0.9641, substantially 

outperforming both CSO (0.8848) and GA (0.8487). This 

represents an 8.96% improvement over the CSO and a 13.60% 

improvement over the GA. The printToken test suite dataset 

shows all three algorithms perform at the same high level. 

GACSO still maintains the lead at 0.9566, with modest 

improvements over CSO (0.9561) and GA (0.9556) at 0.06% 

and 0.10%, respectively. In the Tcas test suite dataset, GA-CSO 

achieves a CE of 0.7338 compared to CSO's 0.6619 and GA's 

0.6667, representing improvements of 10.86% and 10.06% 

respectively. Similarly, for the schedule test suite dataset, GA-

CSO (0.7890) outperforms both CSO (0.7722) and GA (0.7670), 

showing improvements of 2.17% and 2.86% respectively. In the 

schedule2 test suite dataset, we observe that GA-CSO (0.6557) 

still outperforms both GA (0.6236) and CSO (0.5904), showing 

an 11.06% improvement over CSO and a 5.15% improvement 

over GA.  

On average, the hybrid GA-CSO algorithm demonstrates 

substantial enhancements in Coverage Effectiveness, 

outperforming GA by 6.35% and CSO by 6.62%. 

 

 
 

Fig. 6. GACSO, GA and CSO CE Results  

 
TABLE VI.  CE RESULTS FOR GA-CSO, CSO AND GA 

 

CE Results GA-CSO CSO GA 

Totinfo 0.96409769 0.8847764 0.848684 

Printtoken 0.95660609 0.95606582 0.9556074 

Tcas 0.733769 0.661899 0.666729 

Schedule 0.788965 0.77221 0.766996 

Schedule2 0.655739 0.590416 0.623637 

 

 

These significant improvements highlight the effectiveness 

of the hybrid approach in maximizing test coverage across 

diverse test suite dataset types. The results show clearly that the 

hybrid GA-CSO algorithm successfully combines the 

exploration capabilities of GA with the exploitation strengths of 

CSO, resulting in more comprehensive test coverage overall. 

The consistent superiority of GA-CSO across all test suite 

datasets, regardless of their complexity or the relative 

performance of the standalone algorithms, confirms that the 

hybridization strategy represents a robust advancement in test 

coverage optimization techniques.  

 

B. Normality Test Using Analysis of Variance (ANOVA)  

 

To assess the normality of the data distributions, Analysis of 

Variance (ANOVA), also known as the Shapiro-Wilk test, was 

conducted. The results is shown in Table VII. The null 

hypothesis (“H₀”) of this test states that the data follows a normal 

distribution, while the alternative hypothesis (“H₁”) indicates 

deviation from normality. A p-value greater than 0.05 suggests 

that the data is likely to be normally distributed, whereas a p-

value less than 0.05 indicates a significant difference from 

normality.     

 
TABLE VII.  THE ANOVA (SHAPIRO-WILK TEST) RESULT 

FOR THE TEST SUITE   

 

 Shapiro-Wilk 
 

df p-value 

totinfo_APFD_GA-CSO 29 0.118 

totinfo_APFD_cso 29 0.161 

totinfo_APFD_ga 29 0.012 

schedule2_APFD_ga 29 0.486 

printtoken_APFD_GA-CSO 29 0.707 

printtoken_APFD_cso 29 0.047 

printtoken_APFD_ga 29 0.001 

tcas_APFD_GA-CSO 29 0.076 

tcas_APFD_CSO 29 0.516 

tcas_APFD_ga 29 0.281 

schedule2_APFD_GA-CSO 29 0.408 

schedule2_APFD_CSO 29 0.387 

 

 

C. Interpretation of the Results 

 

The ANOVA (Shapiro-Wilk test) results indicate that the 

majority of datasets exhibit normality, as their respective p-

values exceed the 0.05 significance threshold. Specifically, 

datasets totinfo_APFD_GA-CSO (p = 0.118), 

totinfo_APFD_cso (p = 0.161), schedule2_APFD_ga (p = 

0.486), printtoken_APFD_GA-CSO (p = 0.707), 

tcas_APFD_GA-CSO (p = 0.076), tcas_APFD_CSO (p = 

0.516), tcas_APFD_ga (p = 0.281), schedule2_APFD_GA-

CSO (p = 0.408), and schedule2_APFD_CSO (p= 0.387) do 

not show strong evidence of non-normality. 
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TABLE VIII.  TUKEY HSD RESULT FOR GA-CSO  
   

Mean 

Difference 

Std Error p value 

GACSO CSO 0.039930* 0.012634673198570 0.005 

GA 0.058206 0.012634673198570 0.000 

 

 

The Tukey HSD test aided in identifying value-based 

difference when multiple test case prioritization techniques are 

applied to programs such as the Siemens Suite, hence 

highlighting the statistical significance of the hybridized 

algorithm in comparison to others. The Tukey HSD results is 

shown in Table VIII. 

 

D. Summary 

 

The ANOVA (Shapiro-Wilk) tests aids in verification of 

data distribution patterns to understand its normality. Most of 

the tested datasets showed normal distribution patterns as their 

corresponding p-values exceeded 0.05. Data points on 

printtoken_APFD_CSO, totinfo_APFD and 

printtoken_APFD_ga showed deviations from normality with p-

values 0.047, 0.012 and 0.001 respectively. The chapter uses a 

well-thought-out analytical framework in our proposed hybrid 

approach to ensure it performs well in fault detection rates and 

coverage efficiency, and computational. The statistical test was 

necessary to highlight comparison done on multiple groups, 

thereby identifying optimal ranges from search-based 

algorithms.  
 

VI. CONCLUSION AND FUTURE WORKS  
 

The goal of this study is to identify and conduct a thorough 

search on the existing body of works and techniques used in 

TCP, as this will prove useful when identifying the limitations 

in software testing. To address this limitation, we identified a 

possible algorithm enhancement technique that hybridizes GA 

and CSO. In doing so, we were able to increase the APFD rates 

by enhancing optimization rate and increasing coverage of the 

test suite using CE as metrics to ensure better than optimum 

results delivery. Furthermore, the ANOVA and Tukey HSD 

metrics were applied to confirm statistical outcomes showed 

normalization in results and performance. This ensures the 

proposed algorithm can be applied on broader software systems 

by developers and testers alike. The bias from the dataset 

selections come from the Siemens programs size do not 

represent larger industrial scale applications. The parameter 

tuning performed to successfully conduct the testing might be 

restrictive to other program languages.  

Future work can be focused on the use of real-world projects, 

improved parameter tuning to accommodate a hybridized GA 

with other evolutionary algorithms and complex datasets, as 

well as time monitoring with other APFD metrics for a increased 

outcomes. 
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