
International Journal of Innovative Computing 15(2) 209−216

209

Deep Learning-based Ransomware Detection Model

with Hybrid Analysis

Mohammad Yaser Greish1 & Mohd Zamri Osman2

Department of Computer Science

Universiti Teknologi Malaysia

81310 UTM Johor Bahru, Johor, Malaysia

Email: greish@graduate.utm.my1; mohdzamri.osman@utm.my2

Submitted: 30/7/2025. Revised edition: 16/10/2025. Accepted: 4/11/2025. Published online: 30/11/2025

DOI: https://doi.org/10.11113/ijic.v15n2.587

Abstract—Ransomware continues to advance as a major

cybersecurity threat integrating obfuscation techniques to evade

detection systems. Existing machine learning approaches often

struggle to identify novel ransomware variants due to their limited

ability to capture temporal and behavioral patterns. To address

this gap, this study proposes a hybrid ransomware detection

framework that integrates both static and behavioral analysis using

Long Short-Term Memory (LSTM) network architectures. The

models investigated include Vanilla LSTM, Bidirectional LSTM,

Stacked LSTM, and Convolutional LSTM (ConvLSTM). Datasets

containing labeled Windows-based ransomware and benign

samples were collected from open-source repositories and pre-

processed into structured feature vectors suitable for time-series

modeling. The proposed hybrid framework was evaluated using

accuracy, precision, recall, and F1-score metrics to determine

which LSTM performed the best. Among the tested models,

ConvLSTM achieved the highest accuracy of 97.36%, with a

precision of 97.2%, recall of 97.39%, and F1-score of 97.3%,

outperforming other LSTM architectures. These results

demonstrate that combining static and behavioral features with

deep learning significantly improves ransomware detection

performance, suggesting the approach’s strong potential for real-

world cybersecurity applications.

Keywords—Ransomware, LSTM, Hybrid Analysis, Static Features,

Behavioral Detection, Deep Learning, ConvLSTM

I. INTRODUCTION

The rise of ransomware has introduced critical challenges in

modern cybersecurity. This malware variant encrypts user data

or locks access to systems, demanding ransom payments for

decryption keys. In 2024, the FBI (Federal Bureau of

Investigation) revealed that their Internet Crime division

received 3,156 complaints about ransomware (11.7% increase

from 2023) with losses up to $12.4 million on businesses [1].

Ransomware does not only affect businesses, but also

individuals. Statista, an online portal that provides data and

statistics, revealed that in 2023, 7 out of 10 global cyberattacks

were ransomware with 317 million attempts recorded [2].

Traditional detection methods, including signature-based and

heuristic techniques, fall short against modern ransomware due

to its polymorphic and evasive behavior.

Machine Learning (ML) and Deep Learning (DL)

techniques have emerged as promising alternatives to rule-based

detection systems. Specifically, Long Short-Term Memory

(LSTM) networks have shown potential in analyzing sequential

behavioral data such as API calls or system logs. Despite their

promise, many current DL-based detection systems have

limitations. Several prior studies focus exclusively on static

features, overlooking the critical temporal dimension present in

real-world ransomware execution. Other researchers explore

behavioral data solely, failing to utilize the strengths of static

analysis. Moreover, few studies perform comprehensive

architectural comparisons among different LSTM variants to

identify the most effective configurations for ransomware

detection tasks.

Considering these gaps, the aim of this paper is to develop

and evaluate a hybrid ransomware detection framework that

integrates static and behavioral analysis using advanced LSTM-

based architectures. Multiple LSTM-based architectures,

including Vanilla LSTM, Bidirectional LSTM (BiLSTM),

Stacked LSTM, and Convolutional LSTM (ConvLSTM), are

explored and evaluated. Each variant is tested in terms of ability

to model the hybrid feature space and generalize across diverse

ransomware behaviors. This systematic evaluation seeks to

identify the most performant architecture, laying the

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

210

groundwork for real-world deployment of intelligent

ransomware detection systems.

II. LITERATURE REVIEW

A. Background on Malware Analysis and Detection

Ransomware is constantly being identified as a huge threat

to cybersecurity, expressing the need for extensive research into

detection models to limit the losses. Many researchers have

studied feature sets, from static features to behavioral patterns

gathered during execution. Although Machine Learning models

have shown potential, new advancements in DL, specifically

RNNs, have demonstrated effective modeling of complicated

temporal patterns in malware behaviour. Despite current

research, a significant gap remains in merging both types of

malware analysis and maintaining high value of accuracy. This

research aims to explore these patterns and discuss the

importance of using hybrid approaches against advanced

ransomware.

Static analysis is a malware analysis technique which

observes the structure, code, and metadata of a file sample

without the need to execute it. This analysis aims to identify

malicious characteristics or flags by analyzing file headers,

strings, and imported functions. Significant tools are used for

static analysis including disassemblers and decompilers and

they are mainly used by reverse engineers to examine the code.

One key advantage of this static analysis is having the

ability to detect malicious files quickly by comparing the file’s

attributes against a database of signatures. For example, static

analysis is used by antivirus software through signature-based

detection to identify malware [3]. Worth mentioning that there

are no risks taken by processing this type of malware analysis

since malware is not directly executed.

However, static analysis does have limitations. Modern

malware using obfuscation techniques, such as encryption to

hide its behavior, poses a challenge for static analysis.

Furthermore, polymorphic variants of malware, altering their

structure to evade detection making static analysis struggle to

detect them [4]. Despite these limitations, static analysis

remains a baseline for other advanced analysis techniques.

Behavioral Analysis is the process of executing malware

live in a controlled and isolated environment to observe its

behavior and identify malicious processes or operations. It

provides insights into how malware impacts files, registry keys,

and network communications.

This analysis uses an isolated environment to safely execute

malware without compromising the host system. As malware is

running, its actions and processes are being monitored and

logged, allowing analysts to identify suspicious behaviors.

One of the strengths of behavioral analysis is its ability to

detect polymorphic and zero-day malware, as it aims to focus

on what the malware does instead of its metadata and features.

However, behavioral analysis has limitations such as the

inability to deal with malware utilizing anti-sandbox techniques

[5]. This technique where malware evades the detection and

analysis, for example by delaying execution or terminating

when it senses a virtual environment. Despite these limitations,

behavioral analysis is a strong tool in modern malware

detection, especially for identifying modern ransomware.

Hybrid analysis involves merging both static and behavioral

analysis to develop a more comprehensive malware detection

system. This approach addresses the limitations of each

technique by integrating static code analysis with behavioral

observation, allowing real-time analysis of malware.

In hybrid analysis, where static analysis extracts file

metadata, strings, and functions, and behavioral analysis logs

the malware behavior to identify the suspicious activity, they

are merged to detect obfuscated or encrypted malware during

execution. It has been emphasized that hybrid detection

methods provide higher accuracy against evasion techniques

[5], [6], [7].

Several strengths of hybrid analysis demonstrate how it is

an effective approach in providing high accuracy of detection

and reducing false positives against advanced malware.

However, it is often resource intensive due to the computational

need for dynamic execution, and advanced malware can still

evade detection through anti-analysis techniques.

Despite these challenges, hybrid analysis is considered a

very effective approach for modern malware detection,

contributing to the mitigation of cyber threats.

B. Deep Learning for Malware Detection

Convolutional Neural Networks (CNNs), a class of deep

learning models, are used in virus detection tasks that rely on

static signatures, such as converting binary files to grayscale

images. In Fig. 1, a basic architecture of CNN is displayed.

CNN-based approaches extract spatial correlations from

static code representations, enabling classification without the

use of handcrafted features [8]. For instance, converting

malware binaries into pictures then integrating CNN

architecture has been proven to provide more accuracy than

some traditional machine learning techniques. Unfortunately,

this methodology makes CNNs weak in behavioral malware

detection since it depends on analyzing sequences rather than

static signatures.

However, CNNs have limitations. As mentioned earlier, they

lack temporal modeling capabilities, making them unsuitable for

detecting long-term behavior or sequences like API calls [9].

While CNNs effectively model spatial patterns, they fail to

preserve sequential dependencies critical for API-based

ransomware detection. Therefore, this study extends prior work

by integrating convolutional and recurrent components

(ConvLSTM) to simultaneously capture spatial and temporal

behavior.

Fig. 1. Basic Structure of CNN

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

211

Research has been conducted on the usage of Recurrent Neural

Networks (RNNs), another DL type, to address the temporal

modeling gap, specifically LSTMs. Fig. 2 presents a basic RNN

architecture for sequence learning tasks such as malware

behavior detection. Unlike CNNs, RNNs maintain a memory of

previous inputs through hidden states ℎ𝑡, enabling them to

capture temporal patterns over time. Each RNN cell takes the

current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 , to compute

the new state ℎ𝑡 and generate an output 𝑦𝑡 . This structure is

especially useful in modeling sequences of API calls, system

events, or opcode streams, making it suitable for detecting

malware that exhibits time-dependent behaviors.

Fig. 2. Simple Architecture of RNN

These architectures are mainly designed for the purpose of

modeling sequential data in malware behavior. RNNs and

LSTMs are used to process API call traces, opcode sequences,

and system events, making them perfect for behavior-based

detection [10], [11], [12]. LSTMs have an advantage of

maintaining information throughout long sequences, which is

useful in detecting advanced malware that obfuscates itself. It

has been demonstrated that models based on LSTM outperform

standard classifiers at learning malware behavior patterns from

event logs [10].

However, this methodology contains limitations. One major

limitation is overfitting, which occurs when models are trained

on small datasets. The huge LSTM capacity leads to

memorization rather than generalization, which lowers its real-

world effectiveness [11]. Furthermore, training complexity

grows dramatically with deeper or stacked LSTM layers, which

may not always result in improved performance. Variants such

as Bi-LSTM and hybrid models such as CNN-LSTM or Bi-

LSTM with attention mechanisms have been proposed to

increase performance but these require extra architectural

decisions and tuning issues [9], [13].

C. Hybrid Malware Detection

Hybrid malware detection models have developed as a

promising solution to the shortcomings of simply static or

purely behavioral methods. These models incorporate features

gathered from both static code (e.g., opcodes, file metadata) and

dynamic behaviour (e.g., API call sequences, system logs),

using their respective strengths to improve accuracy and

resilience. By combining these two perspectives, hybrid

systems can better detect evasive threats based on code

obfuscation or delayed execution.

The literature has studied a wide range of fusion strategies.

Researchers used direct feature concatenation, merging 261

static and dynamic features from public datasets like as Drebin,

Genome, and CICMalDroid. These fused features were utilized

to train typical machine learning models, and XGBoost

performed the best for Android malware classification [14]. In

addition, a study introduced a two-stage hybrid model known

as 2-MaD, which uses a Bi-LSTM network to identify malware

based on opcode sequences. Samples that are categorized as

benign in the first stage are then sent to a CNN-based

EfficientNet-B3 model, which examines behavioral data such

as process memory snapshots and logs. This sequential

integration enables the system to prioritize quick static analysis

while also checking dubious samples via deeper behavioral

inspection [15].

Fig. 3. Hybrid Malware Detection Model

As illustrated in Fig. 3, hybrid malware detection systems

frequently use a dual-path architecture. The static analysis

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

212

branch captures structural code characteristics and uses models

like Bi-LSTM or MLP to build static feature representations.

Simultaneously, behavioral analysis collects runtime data

(typically in the form of API call sequences) and feeds it into

deep learning models such as CNN-LSTM, which may preserve

both spatial and temporal patterns. The outputs of both branches

are then combined, either by feature concatenation or sequential

decision logic, before being sent to a final classification

module. This architecture follows the architectural patterns

proposed previously, which combine static signatures and

runtime behaviour for effective malware detection [14], [15].

Some efforts have used a more integrated approach to

fusion. One research developed a CNN-LSTM hybrid

architecture to process behavioral data for malware

identification [16]. Their technique pre-processed API call

sequences and translated them to integer values before passing

them through convolutional layers to extract local spatial

characteristics. These features were then analysed by LSTM

layers, which captured temporal dependencies and allowed the

model to spot patterns of malicious activity over time. Their

model attained a validation accuracy of 96%, demonstrating the

power of joint modeling to capture both structural and temporal

features of malware behaviour.

The capacity to maintain sequential patterns is a significant

advantage of deep learning-based hybrid models. While

conventional models like SVM or KNN regard input data as

independent and identically distributed, models like LSTM and

CNN-LSTM keep the inputs' temporal order intact. This is

especially critical for behavioral aspects such as API call

sequences, where the timing and order of events frequently

indicate malevolent intent. It is often stressed that keeping the

order of API requests allowed their model to discover stealthy

activities that non-sequential classifiers would miss [16].

The choice of datasets has an impact on the effectiveness of

hybrid models. Some research used publicly available datasets,

enabling reproducibility and broad applicability [14]. These

included Drebin and Genome for static analysis, as well as

CICMalDroid for behavioral traces. However, a recent study

employed a private dataset built by sandbox execution of IoT

malware samples, allowing them to capture more realistic and

diverse behavioral patterns [9]. Other study used a bespoke

behavioral dataset collected with Rohitab API Monitor and

converted logs to CSV format for training [16]. This dataset

contained 175 behavioral columns representing API call

sequences and log severity values.

Despite encouraging results, contemporary hybrid models

have limitations. The two-stage design of 2-MaD model relies

on the initial static classifier; if it misclassifies a sample as

benign, the behavioral analysis is never performed, potentially

overlooking advanced threats [15]. Similarly, the CNN-LSTM

model is highly accurate, its performance against zero-day or

hostile malware is not well understood [16]. Furthermore, many

studies do not investigate how different embedding strategies,

such as FastText or one-hot encoding, influence performance.

D. Research Gap

While machine learning offers powerful tools for malware

detection, current limitations in data availability, model

robustness against evolving threats, and computational

demands highlight areas for future research and development.

Addressing these challenges is crucial for building more

effective and adaptable malware detection systems [17].

Machine Learning cannot automatically learn hierarchical

patterns or complex interactions (temporal sequences of API

calls or process trees), which are often essential in identifying

sophisticated ransomware behaviors [18]. Despite various

research investigating the application of deep learning for

malware detection, several gaps remain unresolved, particularly

in the context of ransomware and hybrid feature integration.

Most present research focuses on static or behavioral aspects

separately, with only a few efforts devoted to merging both in

a cohesive hybrid framework. This fragmented strategy

frequently results in less generalizability, particularly when

dealing with zero-day ransomware or evasion strategies.

Behavioral analysis is often considered resource intensive

requiring future tradeoffs for practical deployment [19].

Zahoora et al. [20] focused primarily on behavioral (runtime)

features, using dynamic host-based events such as API calls and

registry modifications to detect zero-day ransomware, though

their dataset also contained some static indicators such as file

extensions and binary strings. Given the reported instability in

single LSTM training [10], this research compares multiple

LSTM variants under identical conditions to determine the most

efficient configuration.

Furthermore, while LSTM networks have been shown to be

useful for modeling sequential behavioral patterns such as

opcode or API call sequences, most current study uses a single

LSTM architecture without comparing its variants. For example,

while Bidirectional LSTM and Stacked LSTM models have

shown promise in isolated tasks, there has been no

comprehensive evaluation of how these variants perform in

ransomware detection scenarios, particularly when applied to

hybrid datasets with both static and behavioral inputs.

Another notable gap is the absence of uniformity in datasets.

Much research rely on private, out-of-date, or domain-specific

data (e.g., Android malware), which reduces reproducibility and

real-world usefulness. In contrast, this study employs publicly

available ransomware and benign datasets, allowing for open

benchmarking.

III. PROPOSED METHODOLOGY

The methodology adopted in this research to develop a

hybrid deep learning-based ransomware detection model is

structured into three core phases: feature extraction and

preprocessing, model development, and evaluation. Each phase

addresses specific challenges in ransomware detection,

combining static and behavioral analysis to enhance model

robustness and detection accuracy. The limitations identified in

current static, behavioral, and hybrid detection approaches

motivated the design of our three-phase framework (Fig. 4),

which integrates both feature types under multiple LSTM

architectures to enhance temporal awareness and generalization.

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

213

Fig. 4. Research Framework

As illustrated in Fig. 4, the proposed framework utilizes two

feature sets – static features extracted from PE files using the

Pefile library, and behavioral logs captured through dynamic

execution in an isolated environment using Procmon software.

These features are preprocessed and transformed into structured

time-series data suitable for sequence modeling. The dataset,

contains labeled Windows-based ransomware and benign

samples sources from open repositories, ensures transparency.

Table I demonstrates selected static features extracted from

selected benign Windows executables, focusing on their entropy

levels, section counts, timestamps, and imported API functions.

All listed files exhibit entropy values within a typical benign

range (approximately 5.7-6.6), which suggests a lack of

encryption or packing. The number of PE section ranges

between 4 and 6, consistent with standard application structure.

The timestamp field provides further indication of software

legitimacy. In addition, the imported API names are commonly

used system or application-level functions.

TABLE I. FEW STATIC FEATURES OF BENIGN SAMPLES

Filename Features

Entropy

Number

of

Sections

Timestamp

Imported API

Names

64BitMAPI

Broker.exe

6.05855823
9

6 7/31/2017
20:35

CreateEvent
A,

TransactNam

edPipe

7z.exe

6.16489084

8

5 5/21/2016

8:19

SysStringLe

n,
AllocString

a2p.exe
5.74484025

9

5 1/4/1970

20:19

_main, abort

ab.exe

6.51633274

646548

5 12/20/201

6
11:54

SetUnhandle

dExceptionFi
lter

Table II displays dynamic behavioral features captured from

a ransomware sample during execution in a monitored

environment. Each entry logs timestamp, process name, system

operation, result, and accessed path. The actions of interest

typically associated with malware attempting to spawn multiple

execution threads, like Thread Create, and various

IRP_MJ_READ operations interacting with critical DLLs such

as umxcheap.dll and Isasrv.dll, which are tied to user-mode and

authentication services respectively.

TABLE II. FEW BEHAVIORAL FEATURES OF A RANSOM SAMPLE

Time of

Day
Features

 Process

Name

Operatio

n
Result

Path

10:07

Explorer.E

XE

IRP_MJ

_READ

SUCCES

S

C:\Windows\

System32\th

umbcache.dll

10:16

System Thread

Create

SUCCES

S

C:\Windows\

System32\sh

ell32.dll

10:23

lsass.exe IRP_MJ

_READ

SUCCES

S

C:\Windows\

System32\lsa

srv.dll

10:42

ctfmon.exe RegOpe

nKey

SUCCES

S

HKLM\Soft

ware\Micros
oft\Input\Sett

ings

Next stage included having four LSTM-based architectures

implemented, consisting of Vanilla LSTM, BiLSTM, Stacked

LSTM, and ConvLSTM, each designed to process the hybrid

features through a dual-branch neural structure. The Vanilla

LSTM model serves as the baseline sequential model, while the

BiLSTM expands context awareness by processing input

sequences in both forward and backward directions. The

Stacked LSTM incorporates multiple layers to enhance learning

capacity, and the ConvLSTM integrates convolutional

operations with LSTM units to capture spatial and temporal

dependencies simultaneously. Models were trained under

identical hyperparameter configurations, including a learning

rate of 0.001, batch size of 32, Adam optimizer, and 10 training

epochs. The models are then evaluated using standard metrics

including accuracy, precision, recall, and F1-score. Accuracy

measuring the overall correctness of classification, precision

indicating the relevance of predicted ransomware samples,

recall evaluating the sensitivity for actual ransomware instances,

and F1-score offering a balanced view by harmonizing precision

and recall. This structured approach enables a comprehensive

comparison of LSTM variants and demonstrates the efficiency

of hybrid analysis in detecting advanced ransomware threats.

IV. RESULTS AND DISCUSSION

Table III presents the performance comparison of the four

LSTM-based models evaluated on the ransomware detection

dataset. The Vanilla and Stacked LSTM models produced

comparable results, achieving 82.49 % accuracy and high

precision (98.19 %) but relatively low recall (65.33 %),

indicating that they were conservative in predicting ransomware

and consequently missed several true positives. The

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

214

Bidirectional LSTM achieved a minor improvement in recall

(65.53 %) and F1-score (78.80 %) owing to its ability to capture

contextual dependencies in both forward and backward

directions.

In contrast, the ConvLSTM model outperformed all others,

reaching 97.36 % accuracy with balanced precision and recall

values above 97 %, resulting in the highest F1-score of 97.30 %.

This performance demonstrates that the convolutional layer

effectively captured localized behavioral motifs before the

sequential learning stage, allowing the network to detect

complex ransomware behaviors more accurately.

TABLE III. MODEL EVALUATION

Model Metrics

 Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Vanilla LSTM 82.49 98.19 65.33 78.46

BiLSTM 82.78 98.79 65.53 78.80

Stacked LSTM 82.49 98.19 65.33 78.46

ConvLSTM 97.36 97.20 97.39 97.30

Across all models, precision remained consistently high,

reflecting a low false-positive rate—an essential property for

real-world deployment where misclassifying benign software

can cause significant disruption. The lower recall values of the

Vanilla and Stacked LSTM models suggest limited capacity to

learn long-term dependencies within behavioral sequences,

whereas the Bidirectional LSTM’s modest recall improvement

confirms the value of dual-directional sequence learning.

Overall, the results in Table III emphasize that integrating

convolutional operations within LSTM architectures markedly

enhances feature extraction and temporal representation,

establishing ConvLSTM as the most robust and generalizable

approach for hybrid ransomware detection.

In addition, a training plot of each LSTM model was

generated to observe how the model performs. These training

accuracy plots, shown in Fig. 5, illustrate the performance of

each LSTM model variant throughout ten training epochs. The

plots include two curve lines in different colors demonstrating

the rate of the respective model on the training set and the testing

set. The accuracy shown in decimals are the percentage

accuracy. For example, a value of 0.95 corresponds to a model

accuracy of 95%. All models show a clear upward trend in both

training and validation accuracy, indicating effective learning

from the data. The Convolutional LSTM and Vanilla LSTM

models achieved near-perfect accuracy and generalization, with

validation accuracy reaching approximately 99%, suggesting

minimal overfitting. The Bidirectional and Stacked LSTM

models also performed well, but their validation accuracy

slightly plateaued below the others, indicating marginally less

stability. Overall, Fig. 5 demonstrates that the ConvLSTM’s

training dynamics are both stable and consistent, confirming that

the integration of convolutional layers improves feature learning

and prevents overfitting. This provides strong experimental

evidence supporting ConvLSTM as the most efficient and

generalizable architecture for the proposed hybrid ransomware

detection framework.

Fig. 5. Training Accuracy Plots for each LSTM Model

The experimental results highlighted the performance

differences among the four LSTM-based architectures used in

the hybrid ransomware detection framework. All models

demonstrated strong performance in terms of precision, but only

the ConvLSTM achieved consistently high recall an F1-score. It

indicated its capability of detecting true ransomware instances

without affecting the false positive rates.

The Vanilla LSTM and Stacked LSTM models shared nearly

identical metrics, each achieving 82.49% accuracy and 98.19%

precision. However, both lagged in recall having a 65.33%

score, which shows that even if they were highly effective in

avoiding false positives, they failed to capture a significant

number of actual ransomware cases. This is observed when

models are overconfident favouring benign predictions unless

patterns are distinctly malicious.

The Bidirectional LSTM using its both past and future ability

within the API call sequences, demonstrated a slight

improvement in recall, scoring a 65.33% and an F1-score of

78.80%. This supports the idea that bidirectional sequence

learning can enhance the detection of temporal dependencies

missed in other unidirectional LSTMs. However, the gain was

not substantial, indicating that bidirectionality alone is still

insufficient when having complex behaviours.

ConvLSTM integrating convolutional operations prior to the

LSTM stage, achieved an accuracy of 97.36% with a nearly

perfect balance between precision and recall, scoring 97.20%

and 97.39% respectively. This indicates the model’s efficiency

in capturing localized API call patterns and long-range temporal

dependencies, both of which are important for identifying

stealthy ransomware attacks. The convolutional layer likely

amplified behavioral signal clarity by extracting short

subsequence motifs, compared to traditional LSTMs.

The experimental success of ConvLSTM validates the

hypothesis of this research which stated that hybrid analysis

improves ransomware detection accuracy more than the usage

of static or behavioral analysis alone. By merging static features

such as file entropy and section count with behavioral

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

215

sequences, the model learned patterns that improved

generalization. This aligns with the findings from studies [12],

where feature fusion enabled models to outperform purely static

or behavioral approaches. Moreover, the model’s performance

in identifying ransomware samples despite using tokenized and

padded behavioral sequences, which are often lossy

representations, indicates the strength of LSTM-based

architectures in handling time-series sparsity. This is an

advancement over traditional classifiers like SVM or Random

Forest, which treat each input independently and lack sequential

attention.

Across all models, precision remained high, even when

recall kept varying. This consistent high precision implies a

strong bias toward correctly identifying benign software, which

is critical in real-world systems where false alarms can lead to

user frustration. However, in security applications, recall is more

critical, as false negatives (missed malware) pose severe risks.

The ConvLSTM’s balanced metrics suggest it is well-positioned

to handle both operational safety and detection efficiency.

Training accuracy plots in Fig. 5 reveal that ConvLSTM and

Vanilla LSTM generalized better than the other two models. The

slight validation accuracy observed in BiLSTM and Stacked

LSTM could be due to overfitting. Additionally, ConvLSTM

maintained high validation accuracy without aggressive

overfitting, likely due to the bias introduced by the convolutional

layer.

Comparing the study results to other similar approaches in

recent studies, achieved a 96.2% accuracy using CNN-LSTM on

behavioral features only [16]. Other notable study carried out

reported an 85-90% accuracy using Random Forest and SVM on

static features [17]. Recent modern study has confirmed that

parameter sharing within ConvLSTM cells enhances the capture

of spatiotemporal dependencies, allowing better identification of

stealthy ransomware activities that evolve dynamically across

execution time [21].

From a deployment perspective, ConvLSTM’s high recall

makes it ideal for real-time integration into endpoint detection

systems or SIEM platforms. Its lower false negative rate implies

better protection against unknown ransomware attacks.

TABLE IV. PREDICTIONS MADE BY EACH LSTM VARIANT

Variant Prediction Probability

Vanilla LSTM Ransomware 83.72%

BiLSTM Ransomware 91.26%

Stacked LSTM Ransomware 88.74%

ConvLSTM Ransomware 95.13%

To test each model, a custom script was developed to handle

the classification of new behavioral CSVsamples. The script

used the tokenizer previously saved to preprocess the input.

After tokenizing, the sample was passed to each of the trained

LSTM model to generate predictions. The predicted class output

by the script included whether the sample is a benign or a

ransomware along with a probability score to indicate each

model’s confidence in its prediction.

Table IV shows the output of each LSTM model predicting

a random sample given as an input. All models — Vanilla

LSTM, BiLSTM, Stacked LSTM, and ConvLSTM —

consistently identified the provided sample as ransomware, with

prediction probabilities ranging from 83.72% to 95.13%.

Notably, the ConvLSTM model showed the highest confidence

at 95.13%, indicating its superior ability to recognize behavioral

patterns indicative of ransomware activity. This high and

consistent agreement across all models confirms the overall

reliability of the hybrid detection framework, while the

ConvLSTM’s higher confidence underscores its robustness and

suitability for real-world deployment where rapid and precise

classification is critical.

V. LIMITATIONS

In controlled experiments, the system displayed good

accuracy and generalization, but many problems were faced. For

starters, some of Procmon's behavioral logs were noisy or

incomplete due to sandbox limits, reducing the quality of

training data. Second, because to the complexity of

convolutional layers, ConvLSTM training took much longer to

execute than other models. Third, the sample size, while

balanced, was tiny in comparison to large-scale enterprise

malware datasets, restricting generalizability. These factors can

restrict model generalization across unseen ransomware

variants, suggesting the need for larger and more heterogeneous

datasets. Finally, the solution was not tested against highly

obfuscated or packed malware, which might elude regular

behavioral monitoring. Our experiments revealed that despite

ConvLSTM’s superior detection accuracy, its training time and

dataset dependency limit scalability similar to other studies. The

MalDroid framework likewise reported higher computational

costs and a need for larger, more diverse datasets to ensure

generalization and real-time feasibility [22]. Future work will

aim to solve these constraints by increasing the dataset,

evaluating adversarial resilience, and improving training

efficiency. Future work will aim to solve these constraints by

increasing the dataset, evaluating adversarial resilience, and

improving training efficiency.

VI. CONCLUSION

The aim of this research was to create and investigate a deep

learning-based ransomware detection framework that combined

static and behavioral analysis for increased accuracy and

robustness. The inspiration originated from the growing threat

of ransomware assaults, as well as the limits of standard

detection methods, which sometimes rely entirely on static

features or signature-based techniques. The proposed approach

overcomes these constraints by combining behavioral insights

and analysing multiple LSTM-based designs to more effectively

detect harmful behaviours.

The collected data was pre-processed and aligned before

being passed into four different LSTM-based models. Each

model was trained and tested to evaluate its effectiveness in

identifying ransomware patterns.

Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116

216

The results demonstrate that the use of static and behavioral

features together improves detection compared to the usage of

each type alone. High precisions were observed on all models

which show that they are reliable in avoiding false positives.

ConvLSTM had the highest recall which proved its ability to

identify ransomware. This study provided a hybrid architecture

balancing performance and accuracy while highlighting the

requirement of behavioral modeling in modern malware

detection systems.

ACKNOWLEDGMENT

The author extends sincere gratitude to Ts. Dr. Mohd Zamri

Osman for his supervision, constructive feedback, and ongoing

support throughout the project. Appreciation is also given to

Universiti Teknologi Malaysia’s Faculty of Computing for

providing the necessary resources to conduct this research.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] Federal Bureau of Investigation. (2024). Internet Crime Report

2024. Internet Crime Complaint Center (IC3).

https://www.ic3.gov/AnnualReport/Reports/2024_IC3Report.p

df.

[2] Statista. (2025). Ransomware – Statistics & facts.

https://www.statista.com/topics/4136/ransomware/#topicOvervi

ew.

[3] Al-Asli, M., & Ghaleb, T. A. (2019, April). Review of signature-

based techniques in antivirus products. In 2019 International

Conference on Computer and Information Sciences (ICCIS) (pp.

1–6). IEEE. https://doi.org/10.1109/ICCISci.2019.8716452.

[4] Avhankar, M. S., Pawar, J., & Kumbhar, V. (n.d.). A

comprehensive survey on polymorphic malware analysis:

Challenges, techniques, and future directions.

[5] Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine

learning techniques for malware analysis. Computers &

Security, 81, 123–147.

https://doi.org/10.1016/j.cose.2018.11.001.

[6] Yadav, B., & Tokekar, S. (2021). Recent innovations and

comparison of deep learning techniques in malware

classification: A review. International Journal of Information

Security Science, 9(4), 230–247.

[7] Majid, A. A. M., Alshaibi, A. J., Kostyuchenko, E., &

Shelupanov, A. (2023). A review of artificial intelligence-based

malware detection using deep learning. Materials Today:

Proceedings, 80, 2678–2683.

https://doi.org/10.1016/j.matpr.2022.10.461.

[8] Akhtar, M. S., & Feng, T. (2022). Detection of malware by deep

learning as CNN-LSTM machine learning techniques in real

time. Symmetry, 14(11), 2308.

https://doi.org/10.3390/sym14112308.

[9] Jeon, J., Jeong, B., Baek, S., & Jeong, Y. S. (2022). Hybrid

malware detection based on Bi-LSTM and SPP-Net for smart

IoT. IEEE Transactions on Industrial Informatics, 18(7), 4830–

4839. https://doi.org/10.1109/TII.2021.3123457

[10] Ravi, V. K., Poornachandran, P., Kp, S., & Kumar, S. S. (2018).

Detecting Android malware using Long Short-term Memory

(LSTM). Journal of Intelligent & Fuzzy Systems.

[11] Lu, R. (2019). Malware detection with LSTM using opcode

language.

[12] Jha, S., Prashar, D., Long, H. V., & Taniar, D. (2020). Recurrent

neural network for detecting malware. Computers & Security,

99, 102037. https://doi.org/10.1016/j.cose.2020.102037.

[13] Shukla, S., Kolhe, G., Manoj, S. P. D., & Rafatirad, S. (2019).

Stealthy malware detection using RNN-based automated

localized feature extraction and classifier. George Mason

University.

[14] Budiarto, R., Kabetta, H., & Buana, I. K. S. (2020). Hybrid-

based malware analysis for effective and efficiency Android

malware detection. In 2020 International Conference on

Informatics, Multimedia, Cyber and Information System

(ICIMCIS) (pp. 1–6). IEEE.

https://doi.org/10.1109/ICIMCIS51567.2020.9354317.

[15] Baek, S., Jeon, J., Jeong, B., & Jeong, Y. S. (2021). Two-stage

hybrid malware detection using deep learning. Human-centric

Computing and Information Sciences, 11, 27.

https://doi.org/10.1186/s13673-021-00270-5.

[16] Karat, G., Kannimoola, J. M., Nair, N., Vazhayil, A., Sujadevi,

V. G., & Poornachandran, P. (2024). CNN-LSTM hybrid model

for enhanced malware analysis and detection. Procedia

Computer Science, 233, 492–503.

https://doi.org/10.1016/j.procs.2024.01.345.

[17] Farooq, M. S., Akram, Z., Alvi, A., & Omer, U. (2022). Role of

logistic regression in malware detection: A systematic literature

review. VFAST Transactions on Software Engineering, 10(2),

36–46.

[18] Herrera-Silva, J. A., & Hernández-Álvarez, M. (2023). Dynamic

feature dataset for ransomware detection using machine learning

algorithms. Sensors, 23(3), 1053.

https://doi.org/10.3390/s23031053.

[19] Davidian, M., Kiperberg, M., & Vanetik, N. (2024). Early

ransomware detection with deep learning models. Future

Internet, 16(8), 291. https://doi.org/10.3390/fi16080291.

[20] Zahoora, U., Khan, A., Rajarajan, M., Khan, S. H., Asam, M., &

Jamal, T. (2022). Ransomware detection using deep learning-

based unsupervised feature extraction and a cost-sensitive Pareto

ensemble classifier. Scientific Reports, 12, 15647.

https://doi.org/10.1038/s41598-022-19904-z.

[21] Kareegalan, K., Asmawi, A., Abdullah, M. T., Ninggal, M. I. H.,

Abdullah, M. D. H., & Muhsen, Y. R. (n.d.). Convolutional long

short-term memory for fileless malware detection.

[22] Haq, I. U., Khan, T. A., Akhunzada, A., & Liu, X. (2022).

MalDroid: Secure DL-enabled intelligent malware detection

framework. IET Communications, 16(10), 1160–1171.

https://doi.org/10.1049/cmu2.12345.

