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Abstract—Ransomware continues to advance as a major 

cybersecurity threat integrating obfuscation techniques to evade 

detection systems. Existing machine learning approaches often 

struggle to identify novel ransomware variants due to their limited 

ability to capture temporal and behavioral patterns. To address 

this gap, this study proposes a hybrid ransomware detection 

framework that integrates both static and behavioral analysis using 

Long Short-Term Memory (LSTM) network architectures. The 

models investigated include Vanilla LSTM, Bidirectional LSTM, 

Stacked LSTM, and Convolutional LSTM (ConvLSTM). Datasets 

containing labeled Windows-based ransomware and benign 

samples were collected from open-source repositories and pre-

processed into structured feature vectors suitable for time-series 

modeling. The proposed hybrid framework was evaluated using 

accuracy, precision, recall, and F1-score metrics to determine 

which LSTM performed the best. Among the tested models, 

ConvLSTM achieved the highest accuracy of 97.36%, with a 

precision of 97.2%, recall of 97.39%, and F1-score of 97.3%, 

outperforming other LSTM architectures. These results 

demonstrate that combining static and behavioral features with 

deep learning significantly improves ransomware detection 

performance, suggesting the approach’s strong potential for real-

world cybersecurity applications. 
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I. INTRODUCTION 
 

The rise of ransomware has introduced critical challenges in 

modern cybersecurity. This malware variant encrypts user data 

or locks access to systems, demanding ransom payments for 

decryption keys. In 2024, the FBI (Federal Bureau of 

Investigation) revealed that their Internet Crime division 

received 3,156 complaints about ransomware (11.7% increase 

from 2023) with losses up to $12.4 million on businesses [1]. 

Ransomware does not only affect businesses, but also 

individuals. Statista, an online portal that provides data and 

statistics, revealed that in 2023, 7 out of 10 global cyberattacks 

were ransomware with 317 million attempts recorded [2]. 

Traditional detection methods, including signature-based and 

heuristic techniques, fall short against modern ransomware due 

to its polymorphic and evasive behavior.   

Machine Learning (ML) and Deep Learning (DL) 

techniques have emerged as promising alternatives to rule-based 

detection systems. Specifically, Long Short-Term Memory 

(LSTM) networks have shown potential in analyzing sequential 

behavioral data such as API calls or system logs. Despite their 

promise, many current DL-based detection systems have 

limitations. Several prior studies focus exclusively on static 

features, overlooking the critical temporal dimension present in 

real-world ransomware execution. Other researchers explore 

behavioral data solely, failing to utilize the strengths of static 

analysis. Moreover, few studies perform comprehensive 

architectural comparisons among different LSTM variants to 

identify the most effective configurations for ransomware 

detection tasks. 

Considering these gaps, the aim of this paper is to develop 

and evaluate a hybrid ransomware detection framework that 

integrates static and behavioral analysis using advanced LSTM-

based architectures. Multiple LSTM-based architectures, 

including Vanilla LSTM, Bidirectional LSTM (BiLSTM), 

Stacked LSTM, and Convolutional LSTM (ConvLSTM), are 

explored and evaluated. Each variant is tested in terms of ability 

to model the hybrid feature space and generalize across diverse 

ransomware behaviors. This systematic evaluation seeks to 

identify the most performant architecture, laying the 
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groundwork for real-world deployment of intelligent 

ransomware detection systems.  

 

II. LITERATURE REVIEW 

 

A. Background on Malware Analysis and Detection 

 

Ransomware is constantly being identified as a huge threat 

to cybersecurity, expressing the need for extensive research into 

detection models to limit the losses. Many researchers have 

studied feature sets, from static features to behavioral patterns 

gathered during execution. Although Machine Learning models 

have shown potential, new advancements in DL, specifically 

RNNs, have demonstrated effective modeling of complicated 

temporal patterns in malware behaviour. Despite current 

research, a significant gap remains in merging both types of 

malware analysis and maintaining high value of accuracy. This 

research aims to explore these patterns and discuss the 

importance of using hybrid approaches against advanced 

ransomware.  

Static analysis is a malware analysis technique which 

observes the structure, code, and metadata of a file sample 

without the need to execute it. This analysis aims to identify 

malicious characteristics or flags by analyzing file headers, 

strings, and imported functions. Significant tools are used for 

static analysis including disassemblers and decompilers and 

they are mainly used by reverse engineers to examine the code. 

One key advantage of this static analysis is having the 

ability to detect malicious files quickly by comparing the file’s 

attributes against a database of signatures. For example, static 

analysis is used by antivirus software through signature-based 

detection to identify malware [3]. Worth mentioning that there 

are no risks taken by processing this type of malware analysis 

since malware is not directly executed. 

However, static analysis does have limitations. Modern 

malware using obfuscation techniques, such as encryption to 

hide its behavior, poses a challenge for static analysis. 

Furthermore, polymorphic variants of malware, altering their 

structure to evade detection making static analysis struggle to 

detect them [4]. Despite these limitations, static analysis 

remains a baseline for other advanced analysis techniques. 

Behavioral Analysis is the process of executing malware 

live in a controlled and isolated environment to observe its 

behavior and identify malicious processes or operations. It 

provides insights into how malware impacts files, registry keys, 

and network communications. 

This analysis uses an isolated environment to safely execute 

malware without compromising the host system. As malware is 

running, its actions and processes are being monitored and 

logged, allowing analysts to identify suspicious behaviors. 

One of the strengths of behavioral analysis is its ability to 

detect polymorphic and zero-day malware, as it aims to focus 

on what the malware does instead of its metadata and features. 

However, behavioral analysis has limitations such as the 

inability to deal with malware utilizing anti-sandbox techniques 

[5]. This technique where malware evades the detection and 

analysis, for example by delaying execution or terminating 

when it senses a virtual environment. Despite these limitations, 

behavioral analysis is a strong tool in modern malware 

detection, especially for identifying modern ransomware. 

Hybrid analysis involves merging both static and behavioral 

analysis to develop a more comprehensive malware detection 

system. This approach addresses the limitations of each 

technique by integrating static code analysis with behavioral 

observation, allowing real-time analysis of malware. 

In hybrid analysis, where static analysis extracts file 

metadata, strings, and functions, and behavioral analysis logs 

the malware behavior to identify the suspicious activity, they 

are merged to detect obfuscated or encrypted malware during 

execution. It has been emphasized that hybrid detection 

methods provide higher accuracy against evasion techniques 

[5], [6], [7].  

Several strengths of hybrid analysis demonstrate how it is 

an effective approach in providing high accuracy of detection 

and reducing false positives against advanced malware. 

However, it is often resource intensive due to the computational 

need for dynamic execution, and advanced malware can still 

evade detection through anti-analysis techniques. 

Despite these challenges, hybrid analysis is considered a 

very effective approach for modern malware detection, 

contributing to the mitigation of cyber threats. 

 

B. Deep Learning for Malware Detection 

 

Convolutional Neural Networks (CNNs), a class of deep 

learning models, are used in virus detection tasks that rely on 

static signatures, such as converting binary files to grayscale 

images. In Fig. 1, a basic architecture of CNN is displayed.    

CNN-based approaches extract spatial correlations from 

static code representations, enabling classification without the 

use of handcrafted features [8]. For instance, converting 

malware binaries into pictures then integrating CNN 

architecture has been proven to provide more accuracy than 

some traditional machine learning techniques. Unfortunately, 

this methodology makes CNNs weak in behavioral malware 

detection since it depends on analyzing sequences rather than 

static signatures.  

However, CNNs have limitations. As mentioned earlier, they 

lack temporal modeling capabilities, making them unsuitable for 

detecting long-term behavior or sequences like API calls [9]. 

While CNNs effectively model spatial patterns, they fail to 

preserve sequential dependencies critical for API-based 

ransomware detection. Therefore, this study extends prior work 

by integrating convolutional and recurrent components 

(ConvLSTM) to simultaneously capture spatial and temporal 

behavior. 

 
Fig. 1.  Basic Structure of CNN 
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Research has been conducted on the usage of Recurrent Neural 

Networks (RNNs), another DL type, to address the temporal 

modeling gap, specifically LSTMs. Fig. 2 presents a basic RNN 

architecture for sequence learning tasks such as malware 

behavior detection. Unlike CNNs, RNNs maintain a memory of 

previous inputs through hidden states ℎ𝑡, enabling them to 

capture temporal patterns over time. Each RNN cell takes the 

current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1 , to compute 

the new state ℎ𝑡 and generate an output 𝑦𝑡 . This structure is 

especially useful in modeling sequences of API calls, system 

events, or opcode streams, making it suitable for detecting 

malware that exhibits time-dependent behaviors. 

 
Fig. 2.  Simple Architecture of RNN 

 

 

These architectures are mainly designed for the purpose of 

modeling sequential data in malware behavior. RNNs and 

LSTMs are used to process API call traces, opcode sequences, 

and system events, making them perfect for behavior-based 

detection [10], [11], [12]. LSTMs have an advantage of 

maintaining information throughout long sequences, which is 

useful in detecting advanced malware that obfuscates itself. It 

has been demonstrated that models based on LSTM outperform 

standard classifiers at learning malware behavior patterns from 

event logs [10].   

However, this methodology contains limitations. One major 

limitation is overfitting, which occurs when models are trained 

on small datasets. The huge LSTM capacity leads to 

memorization rather than generalization, which lowers its real-

world effectiveness [11]. Furthermore, training complexity 

grows dramatically with deeper or stacked LSTM layers, which 

may not always result in improved performance. Variants such 

as Bi-LSTM and hybrid models such as CNN-LSTM or Bi-

LSTM with attention mechanisms have been proposed to 

increase performance but these require extra architectural 

decisions and tuning issues [9], [13]. 

 

C. Hybrid Malware Detection 

 

Hybrid malware detection models have developed as a 

promising solution to the shortcomings of simply static or 

purely behavioral methods. These models incorporate features 

gathered from both static code (e.g., opcodes, file metadata) and 

dynamic behaviour (e.g., API call sequences, system logs), 

using their respective strengths to improve accuracy and 

resilience. By combining these two perspectives, hybrid 

systems can better detect evasive threats based on code 

obfuscation or delayed execution. 

The literature has studied a wide range of fusion strategies. 

Researchers used direct feature concatenation, merging 261 

static and dynamic features from public datasets like as Drebin, 

Genome, and CICMalDroid. These fused features were utilized 

to train typical machine learning models, and XGBoost 

performed the best for Android malware classification [14]. In 

addition, a study introduced a two-stage hybrid model known 

as 2-MaD, which uses a Bi-LSTM network to identify malware 

based on opcode sequences. Samples that are categorized as 

benign in the first stage are then sent to a CNN-based 

EfficientNet-B3 model, which examines behavioral data such 

as process memory snapshots and logs. This sequential 

integration enables the system to prioritize quick static analysis 

while also checking dubious samples via deeper behavioral 

inspection [15].  

 

 
 

Fig. 3.  Hybrid Malware Detection Model 

 

 

As illustrated in Fig. 3, hybrid malware detection systems 

frequently use a dual-path architecture. The static analysis 
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branch captures structural code characteristics and uses models 

like Bi-LSTM or MLP to build static feature representations. 

Simultaneously, behavioral analysis collects runtime data 

(typically in the form of API call sequences) and feeds it into 

deep learning models such as CNN-LSTM, which may preserve 

both spatial and temporal patterns. The outputs of both branches 

are then combined, either by feature concatenation or sequential 

decision logic, before being sent to a final classification 

module. This architecture follows the architectural patterns 

proposed previously, which combine static signatures and 

runtime behaviour for effective malware detection [14], [15]. 

Some efforts have used a more integrated approach to 

fusion. One research developed a CNN-LSTM hybrid 

architecture to process behavioral data for malware 

identification [16]. Their technique pre-processed API call 

sequences and translated them to integer values before passing 

them through convolutional layers to extract local spatial 

characteristics. These features were then analysed by LSTM 

layers, which captured temporal dependencies and allowed the 

model to spot patterns of malicious activity over time. Their 

model attained a validation accuracy of 96%, demonstrating the 

power of joint modeling to capture both structural and temporal 

features of malware behaviour. 

The capacity to maintain sequential patterns is a significant 

advantage of deep learning-based hybrid models. While 

conventional models like SVM or KNN regard input data as 

independent and identically distributed, models like LSTM and 

CNN-LSTM keep the inputs' temporal order intact. This is 

especially critical for behavioral aspects such as API call 

sequences, where the timing and order of events frequently 

indicate malevolent intent. It is often stressed that keeping the 

order of API requests allowed their model to discover stealthy 

activities that non-sequential classifiers would miss [16]. 

The choice of datasets has an impact on the effectiveness of 

hybrid models. Some research used publicly available datasets, 

enabling reproducibility and broad applicability [14]. These 

included Drebin and Genome for static analysis, as well as 

CICMalDroid for behavioral traces. However, a recent study 

employed a private dataset built by sandbox execution of IoT 

malware samples, allowing them to capture more realistic and 

diverse behavioral patterns [9]. Other study used a bespoke 

behavioral dataset collected with Rohitab API Monitor and 

converted logs to CSV format for training [16]. This dataset 

contained 175 behavioral columns representing API call 

sequences and log severity values. 

Despite encouraging results, contemporary hybrid models 

have limitations. The two-stage design of 2-MaD model relies 

on the initial static classifier; if it misclassifies a sample as 

benign, the behavioral analysis is never performed, potentially 

overlooking advanced threats [15]. Similarly, the CNN-LSTM 

model is highly accurate, its performance against zero-day or 

hostile malware is not well understood [16]. Furthermore, many 

studies do not investigate how different embedding strategies, 

such as FastText or one-hot encoding, influence performance. 

 

D. Research Gap 

 

While machine learning offers powerful tools for malware 

detection, current limitations in data availability, model 

robustness against evolving threats, and computational 

demands highlight areas for future research and development. 

Addressing these challenges is crucial for building more 

effective and adaptable malware detection systems [17]. 

Machine Learning cannot automatically learn hierarchical 

patterns or complex interactions (temporal sequences of API 

calls or process trees), which are often essential in identifying 

sophisticated ransomware behaviors [18]. Despite various 

research investigating the application of deep learning for 

malware detection, several gaps remain unresolved, particularly 

in the context of ransomware and hybrid feature integration. 

Most present research focuses on static or behavioral aspects 

separately, with only a few efforts devoted to merging both in 

a cohesive hybrid framework. This fragmented strategy 

frequently results in less generalizability, particularly when 

dealing with zero-day ransomware or evasion strategies. 

Behavioral analysis is often considered resource intensive 

requiring future tradeoffs for practical deployment [19]. 

Zahoora et al. [20] focused primarily on behavioral (runtime) 

features, using dynamic host-based events such as API calls and 

registry modifications to detect zero-day ransomware, though 

their dataset also contained some static indicators such as file 

extensions and binary strings. Given the reported instability in 

single LSTM training [10], this research compares multiple 

LSTM variants under identical conditions to determine the most 

efficient configuration. 

Furthermore, while LSTM networks have been shown to be 

useful for modeling sequential behavioral patterns such as 

opcode or API call sequences, most current study uses a single 

LSTM architecture without comparing its variants. For example, 

while Bidirectional LSTM and Stacked LSTM models have 

shown promise in isolated tasks, there has been no 

comprehensive evaluation of how these variants perform in 

ransomware detection scenarios, particularly when applied to 

hybrid datasets with both static and behavioral inputs. 

Another notable gap is the absence of uniformity in datasets. 

Much research rely on private, out-of-date, or domain-specific 

data (e.g., Android malware), which reduces reproducibility and 

real-world usefulness. In contrast, this study employs publicly 

available ransomware and benign datasets, allowing for open 

benchmarking. 

 

III. PROPOSED METHODOLOGY 

 

The methodology adopted in this research to develop a 

hybrid deep learning-based ransomware detection model is 

structured into three core phases: feature extraction and 

preprocessing, model development, and evaluation. Each phase 

addresses specific challenges in ransomware detection, 

combining static and behavioral analysis to enhance model 

robustness and detection accuracy. The limitations identified in 

current static, behavioral, and hybrid detection approaches 

motivated the design of our three-phase framework (Fig. 4), 

which integrates both feature types under multiple LSTM 

architectures to enhance temporal awareness and generalization. 
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Fig. 4.  Research Framework 

 

 

As illustrated in Fig. 4, the proposed framework utilizes two 

feature sets – static features extracted from PE files using the 

Pefile library, and behavioral logs captured through dynamic 

execution in an isolated environment using Procmon software. 

These features are preprocessed and transformed into structured 

time-series data suitable for sequence modeling. The dataset, 

contains labeled Windows-based ransomware and benign 

samples sources from open repositories, ensures transparency. 

Table I demonstrates selected static features extracted from 

selected benign Windows executables, focusing on their entropy 

levels, section counts, timestamps, and imported API functions. 

All listed files exhibit entropy values within a typical benign 

range (approximately 5.7-6.6), which suggests a lack of 

encryption or packing. The number of PE section ranges 

between 4 and 6, consistent with standard application structure. 

The timestamp field provides further indication of software 

legitimacy. In addition, the imported API names are commonly 

used system or application-level functions.  

 
TABLE I.  FEW STATIC FEATURES OF BENIGN SAMPLES 

 

Filename Features 

 
Entropy 

Number 

of 

Sections 

Timestamp 

Imported API 

Names 

64BitMAPI

Broker.exe 

6.05855823
9 

6 7/31/2017 
20:35 

CreateEvent
A, 

TransactNam

edPipe 

7z.exe 

6.16489084

8 

5 5/21/2016 

8:19 

SysStringLe

n, 
AllocString 

a2p.exe 
5.74484025

9 

5 1/4/1970 

20:19 

_main, abort 

ab.exe 

6.51633274

646548 

5 12/20/201

6 
11:54 

SetUnhandle

dExceptionFi
lter 

 

 
 

 

 

Table II displays dynamic behavioral features captured from 

a ransomware sample during execution in a monitored 

environment. Each entry logs timestamp, process name, system 

operation, result, and accessed path. The actions of interest 

typically associated with malware attempting to spawn multiple 

execution threads, like Thread Create, and various 

IRP_MJ_READ operations interacting with critical DLLs such 

as umxcheap.dll and Isasrv.dll, which are tied to user-mode and 

authentication services respectively.   
 

TABLE II.  FEW BEHAVIORAL FEATURES OF A RANSOM SAMPLE 
 

Time of 

Day 
Features 

 Process 

Name 

Operatio

n 
Result 

Path 

10:07 

Explorer.E

XE 

IRP_MJ

_READ 

SUCCES

S 

C:\Windows\

System32\th

umbcache.dll 

10:16 

System Thread 

Create 

SUCCES

S 

C:\Windows\

System32\sh

ell32.dll 

10:23 

lsass.exe IRP_MJ

_READ 

SUCCES

S 

C:\Windows\

System32\lsa

srv.dll 

10:42 

ctfmon.exe RegOpe

nKey 

SUCCES

S 

HKLM\Soft

ware\Micros
oft\Input\Sett

ings 

 

 

Next stage included having four LSTM-based architectures 

implemented, consisting of Vanilla LSTM, BiLSTM, Stacked 

LSTM, and ConvLSTM, each designed to process the hybrid 

features through a dual-branch neural structure. The Vanilla 

LSTM model serves as the baseline sequential model, while the 

BiLSTM expands context awareness by processing input 

sequences in both forward and backward directions. The 

Stacked LSTM incorporates multiple layers to enhance learning 

capacity, and the ConvLSTM integrates convolutional 

operations with LSTM units to capture spatial and temporal 

dependencies simultaneously. Models were trained under 

identical hyperparameter configurations, including a learning 

rate of 0.001, batch size of 32, Adam optimizer, and 10 training 

epochs. The models are then evaluated using standard metrics 

including accuracy, precision, recall, and F1-score. Accuracy 

measuring the overall correctness of classification, precision 

indicating the relevance of predicted ransomware samples, 

recall evaluating the sensitivity for actual ransomware instances, 

and F1-score offering a balanced view by harmonizing precision 

and recall. This structured approach enables a comprehensive 

comparison of LSTM variants and demonstrates the efficiency 

of hybrid analysis in detecting advanced ransomware threats.  

 

IV. RESULTS AND DISCUSSION 

 

Table III presents the performance comparison of the four 

LSTM-based models evaluated on the ransomware detection 

dataset. The Vanilla and Stacked LSTM models produced 

comparable results, achieving 82.49 % accuracy and high 

precision (98.19 %) but relatively low recall (65.33 %), 

indicating that they were conservative in predicting ransomware 

and consequently missed several true positives. The 
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Bidirectional LSTM achieved a minor improvement in recall 

(65.53 %) and F1-score (78.80 %) owing to its ability to capture 

contextual dependencies in both forward and backward 

directions. 

In contrast, the ConvLSTM model outperformed all others, 

reaching 97.36 % accuracy with balanced precision and recall 

values above 97 %, resulting in the highest F1-score of 97.30 %. 

This performance demonstrates that the convolutional layer 

effectively captured localized behavioral motifs before the 

sequential learning stage, allowing the network to detect 

complex ransomware behaviors more accurately. 

 
TABLE III.  MODEL EVALUATION 

 

Model Metrics 

 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Vanilla LSTM 82.49 98.19 65.33 78.46 

BiLSTM 82.78 98.79 65.53 78.80 

Stacked LSTM 82.49 98.19 65.33 78.46 

ConvLSTM 97.36 97.20 97.39 97.30 

 

 

Across all models, precision remained consistently high, 

reflecting a low false-positive rate—an essential property for 

real-world deployment where misclassifying benign software 

can cause significant disruption. The lower recall values of the 

Vanilla and Stacked LSTM models suggest limited capacity to 

learn long-term dependencies within behavioral sequences, 

whereas the Bidirectional LSTM’s modest recall improvement 

confirms the value of dual-directional sequence learning. 

Overall, the results in Table III emphasize that integrating 

convolutional operations within LSTM architectures markedly 

enhances feature extraction and temporal representation, 

establishing ConvLSTM as the most robust and generalizable 

approach for hybrid ransomware detection. 

In addition, a training plot of each LSTM model was 

generated to observe how the model performs. These training 

accuracy plots, shown in Fig. 5, illustrate the performance of 

each LSTM model variant throughout ten training epochs. The 

plots include two curve lines in different colors demonstrating 

the rate of the respective model on the training set and the testing 

set. The accuracy shown in decimals are the percentage 

accuracy. For example, a value of 0.95 corresponds to a model 

accuracy of 95%. All models show a clear upward trend in both 

training and validation accuracy, indicating effective learning 

from the data. The Convolutional LSTM and Vanilla LSTM 

models achieved near-perfect accuracy and generalization, with 

validation accuracy reaching approximately 99%, suggesting 

minimal overfitting. The Bidirectional and Stacked LSTM 

models also performed well, but their validation accuracy 

slightly plateaued below the others, indicating marginally less 

stability. Overall, Fig. 5 demonstrates that the ConvLSTM’s 

training dynamics are both stable and consistent, confirming that 

the integration of convolutional layers improves feature learning 

and prevents overfitting. This provides strong experimental 

evidence supporting ConvLSTM as the most efficient and 

generalizable architecture for the proposed hybrid ransomware 

detection framework.  

 

 
 

Fig. 5.  Training Accuracy Plots for each LSTM Model 

 

 

The experimental results highlighted the performance 

differences among the four LSTM-based architectures used in 

the hybrid ransomware detection framework. All models 

demonstrated strong performance in terms of precision, but only 

the ConvLSTM achieved consistently high recall an F1-score. It 

indicated its capability of detecting true ransomware instances 

without affecting the false positive rates. 

The Vanilla LSTM and Stacked LSTM models shared nearly 

identical metrics, each achieving 82.49% accuracy and 98.19% 

precision. However, both lagged in recall having a 65.33% 

score, which shows that even if they were highly effective in 

avoiding false positives, they failed to capture a significant 

number of actual ransomware cases. This is observed when 

models are overconfident favouring benign predictions unless 

patterns are distinctly malicious.  

The Bidirectional LSTM using its both past and future ability 

within the API call sequences, demonstrated a slight 

improvement in recall, scoring a 65.33% and an F1-score of 

78.80%. This supports the idea that bidirectional sequence 

learning can enhance the detection of temporal dependencies 

missed in other unidirectional LSTMs. However, the gain was 

not substantial, indicating that bidirectionality alone is still 

insufficient when having complex behaviours. 

ConvLSTM integrating convolutional operations prior to the 

LSTM stage, achieved an accuracy of 97.36% with a nearly 

perfect balance between precision and recall, scoring 97.20% 

and 97.39% respectively. This indicates the model’s efficiency 

in capturing localized API call patterns and long-range temporal 

dependencies, both of which are important for identifying 

stealthy ransomware attacks. The convolutional layer likely 

amplified behavioral signal clarity by extracting short 

subsequence motifs, compared to traditional LSTMs. 

The experimental success of ConvLSTM validates the 

hypothesis of this research which stated that hybrid analysis 

improves ransomware detection accuracy more than the usage 

of static or behavioral analysis alone. By merging static features 

such as file entropy and section count with behavioral  
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sequences, the model learned patterns that improved 

generalization. This aligns with the findings from studies [12], 

where feature fusion enabled models to outperform purely static 

or behavioral approaches. Moreover, the model’s performance 

in identifying ransomware samples despite using tokenized and 

padded behavioral sequences, which are often lossy 

representations, indicates the strength of LSTM-based 

architectures in handling time-series sparsity. This is an 

advancement over traditional classifiers like SVM or Random 

Forest, which treat each input independently and lack sequential 

attention. 

Across all models, precision remained high, even when 

recall kept varying. This consistent high precision implies a 

strong bias toward correctly identifying benign software, which 

is critical in real-world systems where false alarms can lead to 

user frustration. However, in security applications, recall is more 

critical, as false negatives (missed malware) pose severe risks. 

The ConvLSTM’s balanced metrics suggest it is well-positioned 

to handle both operational safety and detection efficiency.  

Training accuracy plots in Fig. 5 reveal that ConvLSTM and 

Vanilla LSTM generalized better than the other two models. The 

slight validation accuracy observed in BiLSTM and Stacked 

LSTM could be due to overfitting. Additionally, ConvLSTM 

maintained high validation accuracy without aggressive 

overfitting, likely due to the bias introduced by the convolutional 

layer. 

Comparing the study results to other similar approaches in 

recent studies, achieved a 96.2% accuracy using CNN-LSTM on 

behavioral features only [16]. Other notable study carried out 

reported an 85-90% accuracy using Random Forest and SVM on 

static features [17]. Recent modern study has confirmed that 

parameter sharing within ConvLSTM cells enhances the capture 

of spatiotemporal dependencies, allowing better identification of 

stealthy ransomware activities that evolve dynamically across 

execution time [21]. 

From a deployment perspective, ConvLSTM’s high recall 

makes it ideal for real-time integration into endpoint detection 

systems or SIEM platforms. Its lower false negative rate implies 

better protection against unknown ransomware attacks.  

 
TABLE IV.  PREDICTIONS MADE BY EACH LSTM VARIANT 

 

Variant Prediction Probability 

Vanilla LSTM Ransomware 83.72% 

BiLSTM Ransomware 91.26% 

Stacked LSTM Ransomware 88.74% 

ConvLSTM Ransomware 95.13% 

 

 

To test each model, a custom script was developed to handle 

the classification of new behavioral CSVsamples. The script 

used the tokenizer previously saved to preprocess the input. 

After tokenizing, the sample was passed to each of the trained 

LSTM model to generate predictions. The predicted class output 

by the script included whether the sample is a benign or a 

ransomware along with a probability score to indicate each 

model’s confidence in its prediction.  

Table IV shows the output of each LSTM model predicting 

a random sample given as an input. All models — Vanilla 

LSTM, BiLSTM, Stacked LSTM, and ConvLSTM — 

consistently identified the provided sample as ransomware, with 

prediction probabilities ranging from 83.72% to 95.13%. 

Notably, the ConvLSTM model showed the highest confidence 

at 95.13%, indicating its superior ability to recognize behavioral 

patterns indicative of ransomware activity. This high and 

consistent agreement across all models confirms the overall 

reliability of the hybrid detection framework, while the 

ConvLSTM’s higher confidence underscores its robustness and 

suitability for real-world deployment where rapid and precise 

classification is critical. 

 

V. LIMITATIONS 

 

In controlled experiments, the system displayed good 

accuracy and generalization, but many problems were faced. For 

starters, some of Procmon's behavioral logs were noisy or 

incomplete due to sandbox limits, reducing the quality of 

training data. Second, because to the complexity of 

convolutional layers, ConvLSTM training took much longer to 

execute than other models. Third, the sample size, while 

balanced, was tiny in comparison to large-scale enterprise 

malware datasets, restricting generalizability. These factors can 

restrict model generalization across unseen ransomware 

variants, suggesting the need for larger and more heterogeneous 

datasets. Finally, the solution was not tested against highly 

obfuscated or packed malware, which might elude regular 

behavioral monitoring. Our experiments revealed that despite 

ConvLSTM’s superior detection accuracy, its training time and 

dataset dependency limit scalability similar to other studies. The 

MalDroid framework likewise reported higher computational 

costs and a need for larger, more diverse datasets to ensure 

generalization and real-time feasibility [22]. Future work will 

aim to solve these constraints by increasing the dataset, 

evaluating adversarial resilience, and improving training 

efficiency. Future work will aim to solve these constraints by 

increasing the dataset, evaluating adversarial resilience, and 

improving training efficiency. 

 

VI. CONCLUSION 

 

The aim of this research was to create and investigate a deep 

learning-based ransomware detection framework that combined 

static and behavioral analysis for increased accuracy and 

robustness. The inspiration originated from the growing threat 

of ransomware assaults, as well as the limits of standard 

detection methods, which sometimes rely entirely on static 

features or signature-based techniques. The proposed approach 

overcomes these constraints by combining behavioral insights 

and analysing multiple LSTM-based designs to more effectively 

detect harmful behaviours. 

The collected data was pre-processed and aligned before 

being passed into four different LSTM-based models. Each 

model was trained and tested to evaluate its effectiveness in 

identifying ransomware patterns. 

 



Mohammad Yaser Greish & Mohd Zamri Osman / IJIC Vol. 15 No. 2 (2025) 109−116 

 

216 

 

The results demonstrate that the use of static and behavioral 

features together improves detection compared to the usage of 

each type alone. High precisions were observed on all models 

which show that they are reliable in avoiding false positives. 

ConvLSTM had the highest recall which proved its ability to 

identify ransomware. This study provided a hybrid architecture 

balancing performance and accuracy while highlighting the 

requirement of behavioral modeling in modern malware 

detection systems. 
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