International Journal of Innovative Computing 15(2) 209-216

UTM

UNIVERSITI TEKNOLOGI MALAYSIA

©

INTERNATIONAL JOURNAL OF

INNOVATIVE COMPUTING

ISSN 2180-4370

Journal Homepage : https://jjic.utm.my/

Deep Learning-based Ransomware Detection Model
with Hybrid Analysis

Mohammad Yaser Greish! & Mohd Zamri Osman?
Department of Computer Science
Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Johor, Malaysia
Email: greish@graduate.utm.my'; mohdzamri.osman@utm.my?

Submitted: 30/7/2025. Revised edition: 16/10/2025. Accepted: 4/11/2025. Published online: 30/11/2025
DOI: https://doi.org/10.11113/ijic.v15n2.587

Abstract—Ransomware continues to advance as a major
cybersecurity threat integrating obfuscation techniques to evade
detection systems. Existing machine learning approaches often
struggle to identify novel ransomware variants due to their limited
ability to capture temporal and behavioral patterns. To address
this gap, this study proposes a hybrid ransomware detection
framework that integrates both static and behavioral analysis using
Long Short-Term Memory (LSTM) network architectures. The
models investigated include Vanilla LSTM, Bidirectional LSTM,
Stacked LSTM, and Convolutional LSTM (ConvLSTM). Datasets
containing labeled Windows-based ransomware and benign
samples were collected from open-source repositories and pre-
processed into structured feature vectors suitable for time-series
modeling. The proposed hybrid framework was evaluated using
accuracy, precision, recall, and Fl-score metrics to determine
which LSTM performed the best. Among the tested models,
ConvLSTM achieved the highest accuracy of 97.36%, with a
precision of 97.2%, recall of 97.39%, and Fl1-score of 97.3%,
outperforming other LSTM architectures. These results
demonstrate that combining static and behavioral features with
deep learning significantly improves ransomware detection
performance, suggesting the approach’s strong potential for real-
world cybersecurity applications.

Keywords—Ransomware, LSTM, Hybrid Analysis, Static Features,
Behavioral Detection, Deep Learning, ConvLSTM

I. INTRODUCTION

The rise of ransomware has introduced critical challenges in
modern cybersecurity. This malware variant encrypts user data
or locks access to systems, demanding ransom payments for
decryption keys. In 2024, the FBI (Federal Bureau of
Investigation) revealed that their Internet Crime division
received 3,156 complaints about ransomware (11.7% increase

209

from 2023) with losses up to $12.4 million on businesses [1].
Ransomware does not only affect businesses, but also
individuals. Statista, an online portal that provides data and
statistics, revealed that in 2023, 7 out of 10 global cyberattacks
were ransomware with 317 million attempts recorded [2].
Traditional detection methods, including signature-based and
heuristic techniques, fall short against modern ransomware due
to its polymorphic and evasive behavior.

Machine Learning (ML) and Deep Learning (DL)
techniques have emerged as promising alternatives to rule-based
detection systems. Specifically, Long Short-Term Memory
(LSTM) networks have shown potential in analyzing sequential
behavioral data such as API calls or system logs. Despite their
promise, many current DL-based detection systems have
limitations. Several prior studies focus exclusively on static
features, overlooking the critical temporal dimension present in
real-world ransomware execution. Other researchers explore
behavioral data solely, failing to utilize the strengths of static
analysis. Moreover, few studies perform comprehensive
architectural comparisons among different LSTM variants to
identify the most effective configurations for ransomware
detection tasks.

Considering these gaps, the aim of this paper is to develop
and evaluate a hybrid ransomware detection framework that
integrates static and behavioral analysis using advanced LSTM-
based architectures. Multiple LSTM-based architectures,
including Vanilla LSTM, Bidirectional LSTM (BiLSTM),
Stacked LSTM, and Convolutional LSTM (ConvLSTM), are
explored and evaluated. Each variant is tested in terms of ability
to model the hybrid feature space and generalize across diverse
ransomware behaviors. This systematic evaluation seeks to
identify the most performant architecture, laying the

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

groundwork for real-world deployment of

ransomware detection systems.

intelligent

II. LITERATURE REVIEW
A. Background on Malware Analysis and Detection

Ransomware is constantly being identified as a huge threat
to cybersecurity, expressing the need for extensive research into
detection models to limit the losses. Many researchers have
studied feature sets, from static features to behavioral patterns
gathered during execution. Although Machine Learning models
have shown potential, new advancements in DL, specifically
RNNSs, have demonstrated effective modeling of complicated
temporal patterns in malware behaviour. Despite current
research, a significant gap remains in merging both types of
malware analysis and maintaining high value of accuracy. This
research aims to explore these patterns and discuss the
importance of using hybrid approaches against advanced
ransomware.

Static analysis is a malware analysis technique which
observes the structure, code, and metadata of a file sample
without the need to execute it. This analysis aims to identify
malicious characteristics or flags by analyzing file headers,
strings, and imported functions. Significant tools are used for
static analysis including disassemblers and decompilers and
they are mainly used by reverse engineers to examine the code.

One key advantage of this static analysis is having the
ability to detect malicious files quickly by comparing the file’s
attributes against a database of signatures. For example, static
analysis is used by antivirus software through signature-based
detection to identify malware [3]. Worth mentioning that there
are no risks taken by processing this type of malware analysis
since malware is not directly executed.

However, static analysis does have limitations. Modern
malware using obfuscation techniques, such as encryption to
hide its behavior, poses a challenge for static analysis.
Furthermore, polymorphic variants of malware, altering their
structure to evade detection making static analysis struggle to
detect them [4]. Despite these limitations, static analysis
remains a baseline for other advanced analysis techniques.

Behavioral Analysis is the process of executing malware
live in a controlled and isolated environment to observe its
behavior and identify malicious processes or operations. It
provides insights into how malware impacts files, registry keys,
and network communications.

This analysis uses an isolated environment to safely execute
malware without compromising the host system. As malware is
running, its actions and processes are being monitored and
logged, allowing analysts to identify suspicious behaviors.

One of the strengths of behavioral analysis is its ability to
detect polymorphic and zero-day malware, as it aims to focus
on what the malware does instead of its metadata and features.
However, behavioral analysis has limitations such as the
inability to deal with malware utilizing anti-sandbox techniques
[5]. This technique where malware evades the detection and
analysis, for example by delaying execution or terminating
when it senses a virtual environment. Despite these limitations,

210

behavioral analysis is a strong tool in modern malware
detection, especially for identifying modern ransomware.

Hybrid analysis involves merging both static and behavioral
analysis to develop a more comprehensive malware detection
system. This approach addresses the limitations of each
technique by integrating static code analysis with behavioral
observation, allowing real-time analysis of malware.

In hybrid analysis, where static analysis extracts file
metadata, strings, and functions, and behavioral analysis logs
the malware behavior to identify the suspicious activity, they
are merged to detect obfuscated or encrypted malware during
execution. It has been emphasized that hybrid detection
methods provide higher accuracy against evasion techniques
(51, [6], [7].

Several strengths of hybrid analysis demonstrate how it is
an effective approach in providing high accuracy of detection
and reducing false positives against advanced malware.
However, it is often resource intensive due to the computational
need for dynamic execution, and advanced malware can still
evade detection through anti-analysis techniques.

Despite these challenges, hybrid analysis is considered a
very effective approach for modern malware detection,
contributing to the mitigation of cyber threats.

B. Deep Learning for Malware Detection

Convolutional Neural Networks (CNNs), a class of deep
learning models, are used in virus detection tasks that rely on
static signatures, such as converting binary files to grayscale
images. In Fig. 1, a basic architecture of CNN is displayed.

CNN-based approaches extract spatial correlations from
static code representations, enabling classification without the
use of handcrafted features [8]. For instance, converting
malware binaries into pictures then integrating CNN
architecture has been proven to provide more accuracy than
some traditional machine learning techniques. Unfortunately,
this methodology makes CNNs weak in behavioral malware
detection since it depends on analyzing sequences rather than
static signatures.

However, CNNs have limitations. As mentioned earlier, they
lack temporal modeling capabilities, making them unsuitable for
detecting long-term behavior or sequences like API calls [9].
While CNNs effectively model spatial patterns, they fail to
preserve sequential dependencies critical for API-based
ransomware detection. Therefore, this study extends prior work
by integrating convolutional and recurrent components
(ConvLSTM) to simultaneously capture spatial and temporal
behavior.

Fully
Connected

Input — % — ® — % —> Output

Fig. 1. Basic Structure of CNN

Convolutional

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

Research has been conducted on the usage of Recurrent Neural
Networks (RNNs), another DL type, to address the temporal
modeling gap, specifically LSTMs. Fig. 2 presents a basic RNN
architecture for sequence learning tasks such as malware
behavior detection. Unlike CNNs, RNNs maintain a memory of
previous inputs through hidden states h;, enabling them to
capture temporal patterns over time. Each RNN cell takes the
current input x; and the previous hidden state h,_; , to compute
the new state h; and generate an output y,. This structure is
especially useful in modeling sequences of API calls, system
events, or opcode streams, making it suitable for detecting
malware that exhibits time-dependent behaviors.

he

Lt Yt

RNN RNN

hi

Fig. 2. Simple Architecture of RNN

he—1

These architectures are mainly designed for the purpose of
modeling sequential data in malware behavior. RNNs and
LSTMs are used to process API call traces, opcode sequences,
and system events, making them perfect for behavior-based
detection [10], [11], [12]. LSTMs have an advantage of
maintaining information throughout long sequences, which is
useful in detecting advanced malware that obfuscates itself. It
has been demonstrated that models based on LSTM outperform
standard classifiers at learning malware behavior patterns from
event logs [10].

However, this methodology contains limitations. One major
limitation is overfitting, which occurs when models are trained
on small datasets. The huge LSTM capacity leads to
memorization rather than generalization, which lowers its real-
world effectiveness [11]. Furthermore, training complexity
grows dramatically with deeper or stacked LSTM layers, which
may not always result in improved performance. Variants such
as Bi-LSTM and hybrid models such as CNN-LSTM or Bi-
LSTM with attention mechanisms have been proposed to
increase performance but these require extra architectural
decisions and tuning issues [9], [13].

C. Hybrid Malware Detection

Hybrid malware detection models have developed as a
promising solution to the shortcomings of simply static or
purely behavioral methods. These models incorporate features
gathered from both static code (e.g., opcodes, file metadata) and
dynamic behaviour (e.g., API call sequences, system logs),

211

using their respective strengths to improve accuracy and
resilience. By combining these two perspectives, hybrid
systems can better detect evasive threats based on code
obfuscation or delayed execution.

The literature has studied a wide range of fusion strategies.
Researchers used direct feature concatenation, merging 261
static and dynamic features from public datasets like as Drebin,
Genome, and CICMalDroid. These fused features were utilized
to train typical machine learning models, and XGBoost
performed the best for Android malware classification [14]. In
addition, a study introduced a two-stage hybrid model known
as 2-MaD, which uses a Bi-LSTM network to identify malware
based on opcode sequences. Samples that are categorized as
benign in the first stage are then sent to a CNN-based
EfficientNet-B3 model, which examines behavioral data such
as process memory snapshots and logs. This sequential
integration enables the system to prioritize quick static analysis
while also checking dubious samples via deeper behavioral
inspection [15].

Malware Sample

A

Static Analysis [Behavioral Analysis]
A N g
Feature Extraction API Logs
(e.g., Opcodes)] &)
Bi-LSTM/MLP CNN-LSTM

Y

A
Static Features Dynamic Features

| |
|

Fusion

Y Y

Benign Malicious

Fig. 3. Hybrid Malware Detection Model

As illustrated in Fig. 3, hybrid malware detection systems
frequently use a dual-path architecture. The static analysis

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

branch captures structural code characteristics and uses models
like Bi-LSTM or MLP to build static feature representations.
Simultaneously, behavioral analysis collects runtime data
(typically in the form of API call sequences) and feeds it into
deep learning models such as CNN-LSTM, which may preserve
both spatial and temporal patterns. The outputs of both branches
are then combined, either by feature concatenation or sequential
decision logic, before being sent to a final classification
module. This architecture follows the architectural patterns
proposed previously, which combine static signatures and
runtime behaviour for effective malware detection [14], [15].

Some efforts have used a more integrated approach to
fusion. One research developed a CNN-LSTM hybrid
architecture to process behavioral data for malware
identification [16]. Their technique pre-processed API call
sequences and translated them to integer values before passing
them through convolutional layers to extract local spatial
characteristics. These features were then analysed by LSTM
layers, which captured temporal dependencies and allowed the
model to spot patterns of malicious activity over time. Their
model attained a validation accuracy of 96%, demonstrating the
power of joint modeling to capture both structural and temporal
features of malware behaviour.

The capacity to maintain sequential patterns is a significant
advantage of deep learning-based hybrid models. While
conventional models like SVM or KNN regard input data as
independent and identically distributed, models like LSTM and
CNN-LSTM keep the inputs' temporal order intact. This is
especially critical for behavioral aspects such as API call
sequences, where the timing and order of events frequently
indicate malevolent intent. It is often stressed that keeping the
order of API requests allowed their model to discover stealthy
activities that non-sequential classifiers would miss [16].

The choice of datasets has an impact on the effectiveness of
hybrid models. Some research used publicly available datasets,
enabling reproducibility and broad applicability [14]. These
included Drebin and Genome for static analysis, as well as
CICMalDroid for behavioral traces. However, a recent study
employed a private dataset built by sandbox execution of IoT
malware samples, allowing them to capture more realistic and
diverse behavioral patterns [9]. Other study used a bespoke
behavioral dataset collected with Rohitab API Monitor and
converted logs to CSV format for training [16]. This dataset
contained 175 behavioral columns representing API call
sequences and log severity values.

Despite encouraging results, contemporary hybrid models
have limitations. The two-stage design of 2-MaD model relies
on the initial static classifier; if it misclassifies a sample as
benign, the behavioral analysis is never performed, potentially
overlooking advanced threats [15]. Similarly, the CNN-LSTM
model is highly accurate, its performance against zero-day or
hostile malware is not well understood [16]. Furthermore, many
studies do not investigate how different embedding strategies,
such as FastText or one-hot encoding, influence performance.

D. Research Gap

While machine learning offers powerful tools for malware
detection, current limitations in data availability, model

212

robustness against evolving threats, and computational
demands highlight areas for future research and development.
Addressing these challenges is crucial for building more
effective and adaptable malware detection systems [17].
Machine Learning cannot automatically learn hierarchical
patterns or complex interactions (temporal sequences of API
calls or process trees), which are often essential in identifying
sophisticated ransomware behaviors [18]. Despite various
research investigating the application of deep learning for
malware detection, several gaps remain unresolved, particularly
in the context of ransomware and hybrid feature integration.
Most present research focuses on static or behavioral aspects
separately, with only a few efforts devoted to merging both in
a cohesive hybrid framework. This fragmented strategy
frequently results in less generalizability, particularly when
dealing with zero-day ransomware or evasion strategies.
Behavioral analysis is often considered resource intensive
requiring future tradeoffs for practical deployment [19].
Zahoora et al. [20] focused primarily on behavioral (runtime)
features, using dynamic host-based events such as API calls and
registry modifications to detect zero-day ransomware, though
their dataset also contained some static indicators such as file
extensions and binary strings. Given the reported instability in
single LSTM training [10], this research compares multiple
LSTM variants under identical conditions to determine the most
efficient configuration.

Furthermore, while LSTM networks have been shown to be
useful for modeling sequential behavioral patterns such as
opcode or API call sequences, most current study uses a single
LSTM architecture without comparing its variants. For example,
while Bidirectional LSTM and Stacked LSTM models have
shown promise in isolated tasks, there has been no
comprehensive evaluation of how these variants perform in
ransomware detection scenarios, particularly when applied to
hybrid datasets with both static and behavioral inputs.

Another notable gap is the absence of uniformity in datasets.
Much research rely on private, out-of-date, or domain-specific
data (e.g., Android malware), which reduces reproducibility and
real-world usefulness. In contrast, this study employs publicly
available ransomware and benign datasets, allowing for open
benchmarking.

III. PROPOSED METHODOLOGY

The methodology adopted in this research to develop a
hybrid deep learning-based ransomware detection model is
structured into three core phases: feature extraction and
preprocessing, model development, and evaluation. Each phase
addresses specific challenges in ransomware detection,
combining static and behavioral analysis to enhance model
robustness and detection accuracy. The limitations identified in
current static, behavioral, and hybrid detection approaches
motivated the design of our three-phase framework (Fig. 4),
which integrates both feature types under multiple LSTM
architectures to enhance temporal awareness and generalization.

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

Phase 1 Dataset and Feature Extraction

Extract Static Features
(hash, entropy, PE
sections)

]

Acquire the Dataset from Preprocess and
Github by VirusSamples team Clean Data

Extract Tokenize API Logs
Behavioral and Convert to

|

I

I

I

I

Execute Samples in i
Features from Time-Series Input i
|

Sandbox using -

Procmon APILogs Format

[
[
[
[
i v
[
[
[

Design and Train Apply Consistent
Integrate Static and multiple LSTM Training Settings (LR =
Behavioral features |=# | Architectures (Vanilla, | = | 0.001, Epochs =10,
into a Hybrid Input BIiLSTM, Stacked, Batch Size = 32,
ConvLSTM) Optimizer = Adam)

|

Phase 3 Model Evaluation

Evaluate using
! Metrics (Accuracy,
! Precision, Recall,
| F1-Score)

s O R P

=» | Random Samples with and Generate Evaluation
Different Formats Reports (Results)

Simulate Detection on _.{ Save Trained Models (.h5)

| p—— |

Fig. 4. Research Framework

As illustrated in Fig. 4, the proposed framework utilizes two
feature sets — static features extracted from PE files using the
Pefile library, and behavioral logs captured through dynamic
execution in an isolated environment using Procmon software.
These features are preprocessed and transformed into structured
time-series data suitable for sequence modeling. The dataset,
contains labeled Windows-based ransomware and benign
samples sources from open repositories, ensures transparency.

Table I demonstrates selected static features extracted from
selected benign Windows executables, focusing on their entropy
levels, section counts, timestamps, and imported API functions.
All listed files exhibit entropy values within a typical benign
range (approximately 5.7-6.6), which suggests a lack of
encryption or packing. The number of PE section ranges
between 4 and 6, consistent with standard application structure.
The timestamp field provides further indication of software
legitimacy. In addition, the imported API names are commonly
used system or application-level functions.

TABLE I. FEW STATIC FEATURES OF BENIGN SAMPLES

Filename Features
Number Imported API
Entropy of Timestamp Names
Sections
6.05855823 6 7/31/2017 = CreateEvent
64BitMAPI 9 20:35 A,
Broker.exe TransactNam
edPipe
6.16489084 5 5/21/2016 SysStringLe
7z.exe 8 8:19 n,
AllocString
a2p.exe 5.74484025 5 1/4/1970 _main, abort
9 20:19
6.51633274 5 12/20/201 SetUnhandle
ab.exe 646548 6 dExceptionFi
11:54 Iter

Table II displays dynamic behavioral features captured from
a ransomware sample during execution in a monitored
environment. Each entry logs timestamp, process name, system
operation, result, and accessed path. The actions of interest
typically associated with malware attempting to spawn multiple
execution threads, like Thread Create, and various
IRP_MIJ READ operations interacting with critical DLLs such
as umxcheap.dll and Isasrv.dll, which are tied to user-mode and
authentication services respectively.

TABLE II. FEW BEHAVIORAL FEATURES OF A RANSOM SAMPLE

Time of Features
Day
Process Operatio Result Path
Name n
Explorer.E | IRP_ MJ | SUCCES | C:\Windows\
10:07 XE _READ System32\th
umbcache.dll
System Thread SUCCES | C:\Windows\
10:16 Create System32\sh
ell32.dll
Isass.exe IRP_MJ | SUCCES | C:\Windows\
10:23 _READ S System32\Isa
srv.dll
ctfmon.exe | RegOpe SUCCES HKLM\Soft
. nKey S ware\Micros
10:42 oft\Input\Sett
ings

Next stage included having four LSTM-based architectures
implemented, consisting of Vanilla LSTM, BiLSTM, Stacked
LSTM, and ConvLSTM, each designed to process the hybrid
features through a dual-branch neural structure. The Vanilla
LSTM model serves as the baseline sequential model, while the
BiLSTM expands context awareness by processing input
sequences in both forward and backward directions. The
Stacked LSTM incorporates multiple layers to enhance learning
capacity, and the ConvLSTM integrates convolutional
operations with LSTM units to capture spatial and temporal
dependencies simultaneously. Models were trained under
identical hyperparameter configurations, including a learning
rate of 0.001, batch size of 32, Adam optimizer, and 10 training
epochs. The models are then evaluated using standard metrics
including accuracy, precision, recall, and F1-score. Accuracy
measuring the overall correctness of classification, precision
indicating the relevance of predicted ransomware samples,
recall evaluating the sensitivity for actual ransomware instances,
and F1-score offering a balanced view by harmonizing precision
and recall. This structured approach enables a comprehensive
comparison of LSTM variants and demonstrates the efficiency
of hybrid analysis in detecting advanced ransomware threats.

IV. RESULTS AND DISCUSSION

Table III presents the performance comparison of the four
LSTM-based models evaluated on the ransomware detection
dataset. The Vanilla and Stacked LSTM models produced
comparable results, achieving 82.49 % accuracy and high
precision (98.19 %) but relatively low recall (65.33 %),
indicating that they were conservative in predicting ransomware
and consequently missed several true positives. The

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

Bidirectional LSTM achieved a minor improvement in recall
(65.53 %) and F1-score (78.80 %) owing to its ability to capture
contextual dependencies in both forward and backward
directions.

In contrast, the ConvLSTM model outperformed all others,
reaching 97.36 % accuracy with balanced precision and recall
values above 97 %, resulting in the highest F1-score of 97.30 %.
This performance demonstrates that the convolutional layer
effectively captured localized behavioral motifs before the
sequential learning stage, allowing the network to detect
complex ransomware behaviors more accurately.

TABLE III. MODEL EVALUATION

Model Metrics
Accuracy | Precision Recall F1-Score
(%) (%) (%) (%)
Vanilla LSTM 82.49 98.19 65.33 78.46
BiLSTM 82.78 98.79 65.53 78.80
Stacked LSTM 8249 98.19 65.33 78.46
ConvLSTM 97.36 97.20 97.39 97.30

Across all models, precision remained consistently high,
reflecting a low false-positive rate—an essential property for
real-world deployment where misclassifying benign software
can cause significant disruption. The lower recall values of the
Vanilla and Stacked LSTM models suggest limited capacity to
learn long-term dependencies within behavioral sequences,
whereas the Bidirectional LSTM’s modest recall improvement
confirms the value of dual-directional sequence learning.
Overall, the results in Table III emphasize that integrating
convolutional operations within LSTM architectures markedly
enhances feature extraction and temporal representation,
establishing ConvLSTM as the most robust and generalizable
approach for hybrid ransomware detection.

In addition, a training plot of each LSTM model was
generated to observe how the model performs. These training
accuracy plots, shown in Fig. 5, illustrate the performance of
each LSTM model variant throughout ten training epochs. The
plots include two curve lines in different colors demonstrating
the rate of the respective model on the training set and the testing
set. The accuracy shown in decimals are the percentage
accuracy. For example, a value of 0.95 corresponds to a model
accuracy of 95%. All models show a clear upward trend in both
training and validation accuracy, indicating effective learning
from the data. The Convolutional LSTM and Vanilla LSTM
models achieved near-perfect accuracy and generalization, with
validation accuracy reaching approximately 99%, suggesting
minimal overfitting. The Bidirectional and Stacked LSTM
models also performed well, but their validation accuracy
slightly plateaued below the others, indicating marginally less
stability. Overall, Fig. 5 demonstrates that the ConvLSTM’s
training dynamics are both stable and consistent, confirming that
the integration of convolutional layers improves feature learning
and prevents overfitting. This provides strong experimental
evidence supporting ConvLSTM as the most efficient and

214

generalizable architecture for the proposed hybrid ransomware
detection framework.

Vanilla LSTM Hybrid Model Accuracy Bidirectional LSTM Hybrid Mode! Accuracy

o

— Train Accuracy
Validation Accuracy

6

o

]
nach

ConvLSTM Hybrid Model Accuracy
——

Stacked LSTM Hybrid Madel Accuracy

—— Train Accuracy
—— Validation Accuracy

6 8

—

Fig. 5. Training Accuracy Plots for each LSTM Model

The experimental results highlighted the performance
differences among the four LSTM-based architectures used in
the hybrid ransomware detection framework. All models
demonstrated strong performance in terms of precision, but only
the ConvLSTM achieved consistently high recall an F1-score. It
indicated its capability of detecting true ransomware instances
without affecting the false positive rates.

The Vanilla LSTM and Stacked LSTM models shared nearly
identical metrics, each achieving 82.49% accuracy and 98.19%
precision. However, both lagged in recall having a 65.33%
score, which shows that even if they were highly effective in
avoiding false positives, they failed to capture a significant
number of actual ransomware cases. This is observed when
models are overconfident favouring benign predictions unless
patterns are distinctly malicious.

The Bidirectional LSTM using its both past and future ability
within the API call sequences, demonstrated a slight
improvement in recall, scoring a 65.33% and an F1-score of
78.80%. This supports the idea that bidirectional sequence
learning can enhance the detection of temporal dependencies
missed in other unidirectional LSTMs. However, the gain was
not substantial, indicating that bidirectionality alone is still
insufficient when having complex behaviours.

ConvLSTM integrating convolutional operations prior to the
LSTM stage, achieved an accuracy of 97.36% with a nearly
perfect balance between precision and recall, scoring 97.20%
and 97.39% respectively. This indicates the model’s efficiency
in capturing localized API call patterns and long-range temporal
dependencies, both of which are important for identifying
stealthy ransomware attacks. The convolutional layer likely
amplified behavioral signal clarity by extracting short
subsequence motifs, compared to traditional LSTMs.

The experimental success of ConvLSTM validates the
hypothesis of this research which stated that hybrid analysis
improves ransomware detection accuracy more than the usage
of static or behavioral analysis alone. By merging static features
such as file entropy and section count with behavioral

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

sequences, the model learned patterns that improved
generalization. This aligns with the findings from studies [12],
where feature fusion enabled models to outperform purely static
or behavioral approaches. Moreover, the model’s performance
in identifying ransomware samples despite using tokenized and
padded behavioral sequences, which are often lossy
representations, indicates the strength of LSTM-based
architectures in handling time-series sparsity. This is an
advancement over traditional classifiers like SVM or Random
Forest, which treat each input independently and lack sequential
attention.

Across all models, precision remained high, even when
recall kept varying. This consistent high precision implies a
strong bias toward correctly identifying benign software, which
is critical in real-world systems where false alarms can lead to
user frustration. However, in security applications, recall is more
critical, as false negatives (missed malware) pose severe risks.
The ConvLSTM’s balanced metrics suggest it is well-positioned
to handle both operational safety and detection efficiency.

Training accuracy plots in Fig. 5 reveal that ConvLSTM and
Vanilla LSTM generalized better than the other two models. The
slight validation accuracy observed in BiLSTM and Stacked
LSTM could be due to overfitting. Additionally, ConvLSTM
maintained high validation accuracy without aggressive
overfitting, likely due to the bias introduced by the convolutional
layer.

Comparing the study results to other similar approaches in
recent studies, achieved a 96.2% accuracy using CNN-LSTM on
behavioral features only [16]. Other notable study carried out
reported an 85-90% accuracy using Random Forest and SVM on
static features [17]. Recent modern study has confirmed that
parameter sharing within ConvLSTM cells enhances the capture
of spatiotemporal dependencies, allowing better identification of
stealthy ransomware activities that evolve dynamically across
execution time [21].

From a deployment perspective, ConvLSTM’s high recall
makes it ideal for real-time integration into endpoint detection
systems or SIEM platforms. Its lower false negative rate implies
better protection against unknown ransomware attacks.

TABLE IV. PREDICTIONS MADE BY EACH LSTM VARIANT

Variant Prediction Probability
Vanilla LSTM Ransomware 83.72%
BiLSTM Ransomware 91.26%
Stacked LSTM Ransomware 88.74%
ConvLSTM Ransomware 95.13%

To test each model, a custom script was developed to handle
the classification of new behavioral CSVsamples. The script
used the tokenizer previously saved to preprocess the input.
After tokenizing, the sample was passed to each of the trained
LSTM model to generate predictions. The predicted class output
by the script included whether the sample is a benign or a
ransomware along with a probability score to indicate each
model’s confidence in its prediction.

215

Table IV shows the output of each LSTM model predicting
a random sample given as an input. All models — Vanilla
LSTM, BiLSTM, Stacked LSTM, and ConvLSTM
consistently identified the provided sample as ransomware, with
prediction probabilities ranging from 83.72% to 95.13%.
Notably, the ConvLSTM model showed the highest confidence
at 95.13%, indicating its superior ability to recognize behavioral
patterns indicative of ransomware activity. This high and
consistent agreement across all models confirms the overall
reliability of the hybrid detection framework, while the
ConvLSTM’s higher confidence underscores its robustness and
suitability for real-world deployment where rapid and precise
classification is critical.

V. LIMITATIONS

In controlled experiments, the system displayed good
accuracy and generalization, but many problems were faced. For
starters, some of Procmon's behavioral logs were noisy or
incomplete due to sandbox limits, reducing the quality of
training data. Second, because to the complexity of
convolutional layers, ConvLSTM training took much longer to
execute than other models. Third, the sample size, while
balanced, was tiny in comparison to large-scale enterprise
malware datasets, restricting generalizability. These factors can
restrict model generalization across unseen ransomware
variants, suggesting the need for larger and more heterogeneous
datasets. Finally, the solution was not tested against highly
obfuscated or packed malware, which might elude regular
behavioral monitoring. Our experiments revealed that despite
ConvLSTM’s superior detection accuracy, its training time and
dataset dependency limit scalability similar to other studies. The
MalDroid framework likewise reported higher computational
costs and a need for larger, more diverse datasets to ensure
generalization and real-time feasibility [22]. Future work will
aim to solve these constraints by increasing the dataset,
evaluating adversarial resilience, and improving training
efficiency. Future work will aim to solve these constraints by
increasing the dataset, evaluating adversarial resilience, and
improving training efficiency.

VI. CONCLUSION

The aim of this research was to create and investigate a deep
learning-based ransomware detection framework that combined
static and behavioral analysis for increased accuracy and
robustness. The inspiration originated from the growing threat
of ransomware assaults, as well as the limits of standard
detection methods, which sometimes rely entirely on static
features or signature-based techniques. The proposed approach
overcomes these constraints by combining behavioral insights
and analysing multiple LSTM-based designs to more effectively
detect harmful behaviours.

The collected data was pre-processed and aligned before
being passed into four different LSTM-based models. Each
model was trained and tested to evaluate its effectiveness in
identifying ransomware patterns.

Mohammad Yaser Greish & Mohd Zamri Osman / 1JIC Vol. 15 No. 2 (2025) 109-116

The results demonstrate that the use of static and behavioral
features together improves detection compared to the usage of
each type alone. High precisions were observed on all models
which show that they are reliable in avoiding false positives.
ConvLSTM had the highest recall which proved its ability to
identify ransomware. This study provided a hybrid architecture
balancing performance and accuracy while highlighting the
requirement of behavioral modeling in modern malware
detection systems.

ACKNOWLEDGMENT

The author extends sincere gratitude to Ts. Dr. Mohd Zamri
Osman for his supervision, constructive feedback, and ongoing
support throughout the project. Appreciation is also given to
Universiti Teknologi Malaysia’s Faculty of Computing for
providing the necessary resources to conduct this research.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest
regarding the publication of this paper.

REFERENCES

Federal Bureau of Investigation. (2024). Internet Crime Report

2024. Internet Crime Complaint Center (IC3).
https://www.ic3.gov/AnnualReport/Reports/2024 IC3Report.p
df.

[2] Statista. (2025). Ransomware — Statistics & facts.
https://www.statista.com/topics/4136/ransomware/#topicOvervi
ew.

Al-Asli, M., & Ghaleb, T. A. (2019, April). Review of signature-
based techniques in antivirus products. In 2019 International
Conference on Computer and Information Sciences (ICCIS) (pp.
1-6). IEEE. https://doi.org/10.1109/ICCISci.2019.8716452.
Avhankar, M. S., Pawar, J., & Kumbhar, V. (nd.). 4
comprehensive survey on polymorphic malware analysis:
Challenges, techniques, and future directions.

Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine
learning techniques for malware analysis. Computers &
Security, 81, 123-147.
https://doi.org/10.1016/j.cose.2018.11.001.

Yadav, B., & Tokekar, S. (2021). Recent innovations and
comparison of deep learning techniques in malware
classification: A review. International Journal of Information
Security Science, 9(4), 230-247.

Majid, A. A. M., Alshaibi, A. J., Kostyuchenko, E., &
Shelupanov, A. (2023). A review of artificial intelligence-based
malware detection using deep learning. Materials Today:
Proceedings, 80, 2678-2683.
https://doi.org/10.1016/j.matpr.2022.10.461.

Akhtar, M. S., & Feng, T. (2022). Detection of malware by deep
learning as CNN-LSTM machine learning techniques in real

216

(]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

time. Symmetry, 2308.
https://doi.org/10.3390/sym14112308.

Jeon, J., Jeong, B., Bacek, S., & Jeong, Y. S. (2022). Hybrid
malware detection based on Bi-LSTM and SPP-Net for smart
1oT. IEEE Transactions on Industrial Informatics, 18(7), 4830—
4839. https://doi.org/10.1109/T11.2021.3123457

Ravi, V. K., Poornachandran, P., Kp, S., & Kumar, S. S. (2018).
Detecting Android malware using Long Short-term Memory
(LSTM). Journal of Intelligent & Fuzzy Systems.

Lu, R. (2019). Malware detection with LSTM using opcode
language.

Jha, S., Prashar, D., Long, H. V., & Taniar, D. (2020). Recurrent
neural network for detecting malware. Computers & Security,
99, 102037. https://doi.org/10.1016/j.cose.2020.102037.
Shukla, S., Kolhe, G., Manoj, S. P. D., & Rafatirad, S. (2019).
Stealthy malware detection using RNN-based automated
localized feature extraction and classifier. George Mason
University.

Budiarto, R., Kabetta, H., & Buana, 1. K. S. (2020). Hybrid-
based malware analysis for effective and efficiency Android
malware detection. In 2020 International Conference on
Informatics, Multimedia, Cyber and Information System
(ICIMCIS) p- 1-6). IEEE.
https://doi.org/10.1109/ICIMCIS51567.2020.9354317.

Bacek, S., Jeon, J., Jeong, B., & Jeong, Y. S. (2021). Two-stage
hybrid malware detection using deep learning. Human-centric
Computing and Information Sciences, 11, 27.
https://doi.org/10.1186/s13673-021-00270-5.

Karat, G., Kannimoola, J. M., Nair, N., Vazhayil, A., Sujadevi,
V. G., & Poornachandran, P. (2024). CNN-LSTM hybrid model
for enhanced malware analysis and detection. Procedia
Computer Science, 233, 492-503.
https://doi.org/10.1016/j.procs.2024.01.345.

Farooq, M. S., Akram, Z., Alvi, A., & Omer, U. (2022). Role of
logistic regression in malware detection: A systematic literature
review. VFAST Transactions on Software Engineering, 10(2),
36-46.

Herrera-Silva, J. A., & Hernandez-Alvarez, M. (2023). Dynamic
feature dataset for ransomware detection using machine learning
algorithms. Sensors, 23(3), 1053.
https://doi.org/10.3390/s23031053.

Davidian, M., Kiperberg, M., & Vanetik, N. (2024). Early
ransomware detection with deep learning models. Future
Internet, 16(8), 291. https://doi.org/10.3390/£116080291.
Zahoora, U., Khan, A., Rajarajan, M., Khan, S. H., Asam, M., &
Jamal, T. (2022). Ransomware detection using deep learning-
based unsupervised feature extraction and a cost-sensitive Pareto
ensemble classifier. Scientific Reports, 12, 15647.
https://doi.org/10.1038/s41598-022-19904-z.

Kareegalan, K., Asmawi, A., Abdullah, M. T., Ninggal, M. I. H,,
Abdullah, M. D. H., & Muhsen, Y. R. (n.d.). Convolutional long
short-term memory for fileless malware detection.

Haq, I. U., Khan, T. A., Akhunzada, A., & Liu, X. (2022).
MalDroid: Secure DL-enabled intelligent malware detection
framework. [ET Communications, 16(10), 1160-1171.
https://doi.org/10.1049/cmu2.12345.

14(11),

