
International Journal of Innovative Computing 4: 1(2014) 9-13 
 

 

 

 

 

International Journal  
of  

Innovative Computing 
 

Journal Homepage: http://se.cs.utm.my/ijic 

 

 
 
9

 
Dynamic Parameterized States Tracking for Reusable 

Workflow Routing  

 

Khor Swee Eng1, Tan Chin Teong2 and Chin Chee Kheen3 
Software Development Lab - KHTP 

MIMOS Berhad 
{1se.khor, 2ct.tan, 3ck.chin}@mimos.my 

 
 

Abstract— Dynamic parameterized states tracking workflow 
system is a workflow solution which aims to decouple business 
logic and application code in order to minimize rigid or spaghetti 
code in any kind of workflow system. This approach, allows 
programmer to focus on the development of the application itself, 
and let the business process owner to deal with the application 
data, business rules and logic. Business process owner can setup, 
configure and deploy workflow process independently without 
changing the workflow engine application code. This workflow 
engine is featured with dynamic functions calling, task aging 
checking and reminder sending. These specific features allow 
process owner to customize their flows seamlessly with their 
business requirement using this workflow engine. The proposed 
workflow solution can be library package or Service Oriented 
Architecture (SOA) based, and can further configure to be 
multitenant workflow solution. In this paper, the design of 
proposed workflow solution is discussed. Actual live systems, 
Intellectual Property Management System (IPMS) and Human 
Resource Information System (HRIS) which have already using 
the proposed workflow solution are also showcased in this paper. 
 
Keywords: Workflow Engine, Routing, Business Process 
Management, Workflow Management, Reusability, State 
Change. 

I. INTRODUCTION 

Workflow system, as modeling technology for business 
processes management (BPM), is the key component for daily 
operations of millions of enterprises across the globe. The 
main objective of workflow system is to improve business 
effectiveness and efficiency while striving for innovation, 
flexibility and accountability [1]. Workflow Management 
Coalition (WfMC) has proposed a framework, which includes 

five categories of interoperability and communication 
standards as describe in TC003v11 WfMC Workflow 
Reference Model [2].  These five interfaces are Process 
Definition Tools, Administration and Monitoring Tools, 
Workflow Engine, Workflow Client Applications and Invoked 
Applications [3]. The idea of this framework is to define scope 
for the implementation of complicated workflow system into 
different common core set at the same time satisfies individual 
business requirements. With this framework, formal 
separation between the development and run-time 
environment is achieved and thus enabling a process definition 
generated by one modeling tool, to be used as input to a 
number of different run-time products [4]. 

At present a variety of different tools have been created to 
analyze, model, describe and document a business process.  A 
quick search of “workflow software solution” on Google 
results in thousands of software related to workflow; namely 
K2 Workflows, Free Workflow, Office Routing Plus, 
Progression, Microsoft Workflow Foundation etc. Creating, 
executing and maintaining workflow software poses unique 
challenges. Most of the commercially available software is 
usually complicated and expensive [5]. On top of that, 
business process owner needs to go through steep learning 
curve before he/she can start using this software. For example, 
Microsoft Workflow Foundation requires users to familiarize 
with the designer view, to understand rules set editor and to 
perform multiple rules evaluations [6] before he/she can start 
creating simple approval activity, which consists of two 
processes and one step. The featured rich software may favor 
sophisticated processes like forward chaining rule sets, but it 
becomes an obstacle for users who seek simple activity 



 Khor, S.E. et al. / IJIC 4:1 (2014),9-13  

 

 10

conditions and fast implementation of business logic without 
going through heavy learning cycle for the particular software. 

The motivation of this paper is to showcase a design of a 
lightweight workflow engine, which can serve majority of the 
business process management. Based on the design, business 
process owners are only required to understand of their 
business logic [7]. They can configure their workflow process 
without going through complicated GUI and rigorous training. 
At the same time, they are able to enjoy the flexibility to 
change business process on-the-fly. In this kind of design, 
business process model data, which stored in database is 
independent from the runtime workflow engine.  

In the following section, we first discuss the design and 
architecture of our dynamic parameterized workflow engine. 
In section III, the application and implementation of the 
workflow engine is described with real-life applications 
developed and hosted in MIMOS. Lastly, section IV discusses 
about the advantages and section V gives a conclusion. 

II. WORFLOW SYSTEM DESIGN PRINCIPLE 

The core design principle of the workflow solution is 
reusability.  While keeping the basic workflow engine 
capability, which is controlling flow between activities, it 
should be easy enough for the developers to integrate the 
application business logic.  This is to ensure the decoupling of 
application logic from strongly tight with the workflow engine 
to prevent any future changes of routing behaviors. There are 
a few benefits, one of main reasons is maintainability. 
Business world always subjects to change and it finally leads 
to application logic change. The application logic change 
always involves a complex code revamp where finally incurs 
poor maintainability of the system . 

The two important resuabilities components that are 
focused are : 

A. Workflow Process Reuse 

Worfklow process reuse is referring to the workflow tree 
configuration that has been created can  be stored and further 
customized and replicated for any applications. The 
configuration of the workflow decision tree works as a 
template that is generalized for any applications usage. It can 
be adopted for any applications if it fits their need. 

B. Business Logic Reuse 

Business logic reuse is aiming at allowing the application to 
update, create, delete their application logic for a specific 
state/activity easily. A business logic will be triggered to 
complete certain processing once a decision is made. This is 
translated to a transition of a workflow decision tree. It can 
significantly help to reduce system changes time.  

Referring to Fig.1, the workflow model consists of three 
components, namely workflow settings, workflow engine and 
workflow output. The workflow settings are basically a 
module for configuration and setting purpose of the generic 
workflow process.  The workflow engine, the core component 
is responsible for the runtime routing, scheduling and etc. 
Last, the workflow output in-charge of the dynamic business 
library invocation and transactions data storage. 

 

 
 
 

Fig. 1. Workflow System Components 

 
Typically, a user of the workflow API with their system 

will initialize the configuration of customized workflow 
processes through the Workflow API. In the configuration, the 
states or activities of the workflow will be stored into the 
database. The necessary configuration setting is to tell the 
basic logic flow of their intended workflow process. The 
creation of the states or activities will also bind to a specific 
namespace, class and method to be invoked when the 
activities is routed. This design makes workflow engine to be 
dynamically adjusted and tuned to any complicated business 
process.   The following is a simple example of a customized 
workflow process. 
 

 

 
 

Fig. 2. Example of customized Workflow Process 

In Fig. 2 example, we have shown that three different 
activities which are named A, B, C are created. The arcs are 
referring to the routing decision by the activities. The arc, A 
B explains the transition from activity A to activity B by a 
specific decision. Each of the arcs can code for different 
decisions.  Concurrently, each of the activities is bound to a 
pre-developed method or function where it contains certain 
business logic. The workflow engine will help to route from 
activity A to activity through the correct decision (from the arc 
A B) and the method in activity B, which is [fB] will be 
automatically invoked. The namespace, class and the method 

Activity C [fC] 

Activity B[fB]  

Activity A [fA] 



 Khor, S.E. et al. / IJIC 4:1 (2014),9-13  

 

 11

are already preset to bind with the activity, in the runtime; the 
workflow engine will invoke the method through reflection. 

In the design, there is a scheduler service, which is running 
as a windows service at the back end of the operation service. 
This scheduler provides functionality for activity aging 
routing and reminder service. Aging and reminder service is to 
allow the workflow process to be automatically processed 
after certain timeframe. The windows service at the 
background will check for all workflow instances duration 

compared with last activity, if the duration exceeds the preset 
timeframe, its aging or reminder function will be called.   

For the workflow output, any of the transaction data, it will 
be logged in the database. The handy API provides 
functionality for developer to check for the current status and 
even the list of histories. 
 
 

 

                                                               
Fig. 3. Entity Relationship Design for the Workflow System 

 
The above Fig. 3 illustrates the ERD for the whole 

workflow system, which will provide business logic 
separation for any system. Through the API that we have 
provided, the user can supply the necessary workflow setting 
data so that the workflow engine can help to do the routing 
and tracing. Below we explain the data withhold by each of 
the entity: 
 
Workflow Policy – Workflow policy is a generic and unique 
naming for a specific workflow process, for example, Leave 
Application flow, Finance Approval flow, etc. 
 
Workflow Activity – Workflow activity is a unique and 
generic activity or state, which will form up a workflow 
policy. 
 
 

 
Workflow Decision – Workflow decision is a set of decision 
that can be linked to an activity to perform a routing. 
 
Workflow Policy Activity – Workflow Policy Activity is 
relationship table to describe the ‘how’ process of routing for 
the create workflow policy. It will hook-up with the workflow 
activity, decision and application stat which finally form a 
unique policy.  
 
Workflow Application Stat – It stores the naming for the 
triggered workflow instance. 
 
Workflow Application Transaction Stat – Each of the 
workflow instances is a workflow application. This entity will 
store all the current transaction status. 
 



 Khor, S.E. et al. / IJIC 4:1 (2014),9-13  

 

 12

Workflow Application Transaction Stat History – All 
historical transaction data is stored here. 

III. APPLICATION INTEGRATION 

The proposed approach has been successfully applied to a 
few development projects in MIMOS. These applications are 
IPMS (Intellectual Property Management System), HRIS 
(Human Resource Information System) and TalentXchange 
(Talent Management System). All the abovementioned systems 
do share same characteristic which require a flexible and robust 
customizable approval flow process.   Fig. 4 refers to a 
deployed workflow system in MIMOS applications. 

 

 Fig. 4. Dynamic Parameterized Workflow System 

This system implements independent logic components. 
They are loosely coupled from the main application. By this 
de-coupling technique, the business logic components can be 
invoked effectively and repeatedly. Re-configuration of 
routing rule can be done through configurator and saved in 
database without any interference or re-coding of the 
application. Below, the steps to integrate with an application 
are explained. 

1) As a start, developers create all the necessity policies, 
activities and the routing rules.  

2) Developers then are required to implement the 
business logic components correspond to the 
activities.  

3) During runtime, the application users interact with 
GUI application as per normal, the application then 
invoke workflow manager with necessary 
parameters.   

4) Business Library Invocation in the Runtime Engine 
then route the application to the corresponded 
business component based on the routing rules that 
previously set by the developers. As for aging and 
reminder items, the invocation is done through a 
scheduler service.  

5) The scheduler interfaces with Workflow Manager 
API. 

6) Aging & Reminder Service is specifically designed to 
handle the scheduler items.  

7) The service then interacts with the Business Library 
Invocation to invoke business logic components 
similar to (4). As this is an automation service, no 
user interaction is needed throughout the whole 
workflow invocation cycle. 

IV. DISCUSSION AND ADVANTAGES 

There are several applications have been developed using 
the workflow system. By using the SDK provided by the 
workflow system, developers can easily integrate their 
configuration workflow logic into the enterprise applications. 
The development time is shortened and at last, the applications 
developed can be easily maintained if there is a need for future 
changes and modifications.  The often change request of the 
enterprise applications due to the business rules changes can 
lead to lesser code changes as well.  

Advantages of the proposed workflow system are listed as 
follows: 
A. Multi-Tenant - A complete re-usable workflow system 

that can support multiple applications even tenants 
concurrently. We now can have a centralized workflow 
repository that will fulfill most of the application needs.  

B. Self-Maintainability - Some of the process flow change 
can even be modified by the application owners 
themselves. Since changes of existing activity route 
required no development effort (only routing rules setting) 
it is possible for the application owner to manage the flow 
without involving developers.  

C. Traceability - Historical data are ready instantly. 
Application history is critical in workflow oriented 
application. Application developers can leverage this 
capability effortless from this dynamic workflow system.  

D. Code Simplicity - In this system, only 2 functions are 
needed to invoke the workflow. All interaction with 
business application is done through the Workflow 
Manager API.  

E. Performance - Direct Assembly function invocation for 
speed and system responsiveness. Unlike other workflow 
system, which implemented through http protocol, 
incurred unnecessary network overhead throughout the 
innovation cycle. 

V. CONCLUSION 

By implementing our system above, we noticed that the 
development effectiveness had improved drastically. The 
developers were confident to modify the code with minimal 
undesirable effect. Those changes incurred only little to no 
development effort. Stability would no longer be an issue 
should there are flow changes in the future. Owners and 
developers were clearer with all the business flows and 
activities that implemented in the system. The workflow 
system improvement and enhancement could be planned 
independently and could be executed concurrently, with no 
inter-dependencies between these two development parties. 

Repeating changes of business flow by owners are definite 
challenges for the developers, as not only that they need to 
revise the code over and over again; they also can’t have 
overall clarity of the business flows. In the long run, the system 



 Khor, S.E. et al. / IJIC 4:1 (2014),9-13  

 

 13

will become complicated, fragile and prone to errors, as a 
simple change in the code might result unpredicted behavior of 
the system. Instead of implementing a gigantic if-else rules 
engine in the application, it should be independently coded and 
implemented, as well as should be maintained modularly.  

 

ACKNOWLEDGMENT 

We would like to thank MIMOS for sponsoring the 
research. 

REFERENCES 
[1] D. Georgakopoulos,, M. Hornick, A. Sheth, An overview of 

workflow management:from process modeling to workflow 

automation infrastructure distributed and parallel databases, vol 
3, pp 119¨C153. Boston: Kluwer 1995. 

[2] http://www.wfmc.org/wfmc-standards-framework.html 
[3] Workflow Management Coalition Workflow Standar, Process 

Definition Interface – XML Process Definition Language 
(Document Number WFMC-TC-1025), 2012. 

[4] H.B Li, D.C Zhan, Reusable workflow system design and 
development, IJCIM, vol 15, no 3,pp39-49,2007 

[5] H. Gruber, C. Huemer, Profitability Analysis of Workflow 
Management Systems, IEEE Conference on Commerce and 
Enterprise Computing, 2009. 

[6] http://msdn.microsoft.com/en-
s/library/aa480193.aspx#introwork_topic2 

[7] J. L. Kmetz, Mapping workflows and managing knowledge: 
simply, sensibly, flexibly, and without software. Newark, 
CreateSpace Independent Publishing Platform, 2011. 

 


